Environmental Science and Pollution Research

, Volume 23, Issue 22, pp 22292–22308 | Cite as

Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide

  • Suman Bajracharya
  • Karolien Vanbroekhoven
  • Cees J.N. Buisman
  • Deepak Pant
  • David P. B. T. B. Strik
Technoeconomic Perspectives on Sustainable CO2 Capture and Utilization


Microbial catalysis of carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO2 as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO2 in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO2 through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO2 and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at −1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO2 reduction. Bioelectrochemical CO2 reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO2 gas mixture feed were achieved with 10 cm2 of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO2 gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO2 reduction with enhanced mass transfer rate at continuous supply of gaseous CO2.

Graphical abstract


Microbial electrosynthesis CO2 reduction Gas diffusion electrode Biocathode Autotrophic bioproduction 



Ampere per square meter




Cation exchange membrane


Catalyst layer


Dissolved oxygen


Gas diffusion electrode


Gas diffusion layer


Microbial electrosynthesis


Gas–liquid mass transfer coefficient


Sodium 2-bromoethanesulfonate




Polyvinylidene difluoride


Revolution per minute


Standard hydrogen electrode


Optical density


Volatile fatty acid



The work was supported by a PhD grant to Suman Bajracharya from VITO’s strategic research funds. The authors acknowledge Mr. Shishir Kanti Pramanik for conducting the gas transfer experiments and taking samples from the reactor.

Supplementary material

11356_2016_7196_MOESM1_ESM.docx (95 kb)
ESM. 1(DOCX 94 kb)


  1. Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29:70–78. doi:10.1016/j.tibtech.2010.11.006 CrossRefGoogle Scholar
  2. Alvarez-Gallego Y, Dominguez-Benetton X, Pant D, Diels L, Vanbroekhoven K, Genné I, Vermeiren P (2012) Development of gas diffusion electrodes for cogeneration of chemicals and electricity. Electrochim Acta 82:415–426. doi:10.1016/j.electacta.2012.06.096 CrossRefGoogle Scholar
  3. Bajracharya S, ter Heijne A, Dominguez X, Strik DPBTB, Vanbroekhoven K, Buisman CJN, Pant D, ter Heijne A, Benetton XD, Vanbroekhoven K, Buisman CJN, Strik DPBTB, Pant D (2015) CO2 reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Bioresour Technol. doi:10.1016/j.biortech.2015.05.081 Google Scholar
  4. Blanchet EM, Duquenne F, Rafrafi Y, Etcheverry L, Erable B, Bergel A (2015) Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction. Energy Environ Sci 8:3731–3744. doi:10.1039/C5EE03088A CrossRefGoogle Scholar
  5. Cassman KG, Liska AJ (2007) Food and fuel for all: realistic or foolish? Biofuels, Bioproducts and Biorefining 1:18–23. doi:10.1002/bbb.3 CrossRefGoogle Scholar
  6. CAST (2006) Convergence of agriculture and energy : implications for research and policy, CAST commentary, QTA2006-3. Ames, IowaGoogle Scholar
  7. Chu S (2009) Carbon capture and sequestration. Science 325:1599. doi:10.1126/science.1181637 CrossRefGoogle Scholar
  8. Cussler EL (1997) Diffusion: mass transfer in fluid systems, 2nd edn. Cambridge University Press, New YorkGoogle Scholar
  9. Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412. doi:10.1007/s10811-005-8701-7 CrossRefGoogle Scholar
  10. Drake HL, Gößner AS, Daniel SL (2008) Old acetogens, new light. Ann N Y Acad Sci 1125:100. doi:10.1196/annals.1419.016 CrossRefGoogle Scholar
  11. Fan Y, Hongqiang H, Liu H, Fan Y, Hu H, Liu H (2007) Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ Sci Technol 41:8154–8158. doi:10.1021/es071739c CrossRefGoogle Scholar
  12. Fast AG, Papoutsakis ET (2012) Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr Opin Chem Eng 1:380–395. doi:10.1016/j.coche.2012.07.005 CrossRefGoogle Scholar
  13. Fernández, F.G.A., Grima, E.M., Sevilla, J.M.F., López, C.V.G., Moya, B.L., Aparicio, J.C.B., 2011. Liquid-phase gas collection. US2011015957 A1.Google Scholar
  14. Fornero JJ, Rosenbaum M, Cotta MA, Angenent LT (2010) Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity. Environ Sci Technol 44:2728–2734. doi:10.1021/es9031985 CrossRefGoogle Scholar
  15. Gabriel Acien Fernandez F, Gonzalez-Lopez CV, Fernandez Sevilla JM, Molina Grima E (2012) Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? Appl Microbiol Biotechnol 96:577–586. doi:10.1007/s00253-012-4362-z CrossRefGoogle Scholar
  16. Ganigué R, Puig S, Batlle-Vilanova P, Balaguer MD, Colprim J (2015) Microbial electrosynthesis of butyrate from carbon dioxide. Chem Commun 51:3235–3238. doi:10.1039/C4CC10121A CrossRefGoogle Scholar
  17. González-López CV, Acién Fernández FG, Fernández-Sevilla JM, Sánchez Fernández JF, Molina Grima E (2012) Development of a process for efficient use of CO2 from flue gases in the production of photosynthetic microorganisms. Biotechnol Bioeng 109:1637–1650. doi:10.1002/bit.24446 CrossRefGoogle Scholar
  18. HaoYu E, Cheng S, Scott K, Logan B (2007) Microbial fuel cell performance with non-Pt cathode catalysts. J Power Sources 171:275–281. doi:10.1016/j.jpowsour.2007.07.010 CrossRefGoogle Scholar
  19. Hill GA (2006) Measurement of overall volumetric mass transfer coefficients for carbon dioxide in a well-mixed reactor using a pH probe. Ind Eng Chem Res 45:5796–5800. doi:10.1021/ie060242t CrossRefGoogle Scholar
  20. Hu P, Rismani-yazdi H, Gregory S (2013) Anaerobic CO2 fixation by the acetogenic bacterium Moorella thermoacetica. AICHE J 59:3176–3183. doi:10.1002/aic.14127 CrossRefGoogle Scholar
  21. IPCC, 2014. Climate change 2014: synthesis report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland.Google Scholar
  22. Jourdin L, Freguia S, Donose BC, Chen J, Wallace GG, Keller J, Flexer V (2014) A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J Mater Chem A 2:13093–13102. doi:10.1039/C4TA03101F CrossRefGoogle Scholar
  23. Jourdin L, Lu Y, Flexer V, Keller J, Freguia S (2015) Biologically-induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide. ChemElectroChem. doi:10.1002/celc.201500530 Google Scholar
  24. Kopljar D, Inan A, Vindayer P, Wagner N, Klemm E (2014) Electrochemical reduction of CO2 to formate at high current density using gas diffusion electrodes. J Appl Electrochem 44:1107–1116. doi:10.1007/s10800-014-0731-x CrossRefGoogle Scholar
  25. LaBelle EV, Marshall CW, Gilbert JA, May HD (2014) Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome. PLoS One 9:e109935CrossRefGoogle Scholar
  26. Le Quéré C, Peters GP, Andres RJ, Andrew RM, Boden TA, Ciais P, Friedlingstein P, Houghton RA, Marland G, Moriarty R, Sitch S, Tans P, Arneth A, Arvanitis A, Bakker DCE, Bopp L, Canadell JG, Chini LP, Doney SC, Harper A, Harris I, House JI, Jain AK, Jones SD, Kato E, Keeling RF, Klein Goldewijk K, Körtzinger A, Koven C, Lefèvre N, Maignan F, Omar A, Ono T, Park G-H, Pfeil B, Poulter B, Raupach MR, Regnier P, Rödenbeck C, Saito S, Schwinger J, Segschneider J, Stocker BD, Takahashi T, Tilbrook B, van Heuven S, Viovy N, Wanninkhof R, Wiltshire A, Zaehle S (2014) Global carbon budget 2013. Earth Syst Sci Data 6:235–263. doi:10.5194/essd-6-235-2014 CrossRefGoogle Scholar
  27. Lee J, Little B (2015) Electrochemical and chemical complications resulting from yeast extract addition to stimulate microbial growth. Corrosion. doi:10.5006/1833 Google Scholar
  28. Lovley DR, Nevin KP (2013) Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr Opin Biotechnol 1–6. doi:10.1016/j.copbio.2013.02.012
  29. Mahmood MN, Masheder D, Harty CJ (1987) Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon dioxide. I. Reduction at lead, indium- and tin-impregnated electrodes. J Appl Electrochem 17:1159–1170. doi:10.1007/BF01023599 CrossRefGoogle Scholar
  30. Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2012) Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl Environ Microbiol 78:8412–8420. doi:10.1128/AEM.02401-12 CrossRefGoogle Scholar
  31. Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2013) Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ Sci Technol 47:6023–6029. doi:10.1021/es400341b CrossRefGoogle Scholar
  32. Modestra JA, Navaneeth B, Venkata Mohan S (2015) Bio-electrocatalytic reduction of CO2: enrichment of homoacetogens and pH optimization towards enhancement of carboxylic acids biosynthesis. J CO2 Util 10:78–87. doi:10.1016/j.jcou.2015.04.001 CrossRefGoogle Scholar
  33. Mohanakrishna G, Seelam JS, Vanbroekhoven K, Pant D (2015) An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction. Faraday Discuss. doi:10.1039/C5FD00041F Google Scholar
  34. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597CrossRefGoogle Scholar
  35. Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77:2882–2886. doi:10.1128/AEM.02642-10 CrossRefGoogle Scholar
  36. Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis : feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic. MBio 1:e00103–e00110. doi:10.1128/mBio.00103-10.Editor CrossRefGoogle Scholar
  37. Oh S-E, Van Ginkel S, Logan BE (2003) The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ Sci Technol 37:5186–5190. doi:10.1021/Es034291y CrossRefGoogle Scholar
  38. Pant D, Van Bogaert G, De Smet M, Diels L, Vanbroekhoven K (2010) Use of novel permeable membrane and air cathodes in acetate microbial fuel cells. Electrochim Acta 55:7710–7716. doi:10.1016/j.electacta.2009.11.086 CrossRefGoogle Scholar
  39. Pasupuleti SB, Srikanth S, Venkata Mohan S, Pant D (2015) Continuous mode operation of microbial fuel cell (MFC) stack with dual gas diffusion cathode design for the treatment of dark fermentation effluent. Int J Hydrogen Energy 40:12424–12435. doi:10.1016/j.ijhydene.2015.07.049 CrossRefGoogle Scholar
  40. Patil SA, Arends JBA, Vanwonterghem I, van Meerbergen J, Guo K, Tyson GW, Rabaey K (2015a) Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2. Environ Sci Technol 49(14):8833–8843Google Scholar
  41. Patil SA, Gildemyn S, Pant D, Zengler K, Logan BE, Rabaey K (2015b) A logical data representation framework for electricity-driven bioproduction processes. Biotechnol Adv 33:736–744. doi:10.1016/j.biotechadv.2015.03.002 CrossRefGoogle Scholar
  42. Rabaey K, Rozendal RA (2010) Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716. doi:10.1038/nrmicro2422 CrossRefGoogle Scholar
  43. Sakai S, Nakashimada Y, Yoshimoto H, Watanabe S, Okada H, Nishio N (2004) Ethanol production from H2 and CO2 by a newly isolated thermophilic bacterium, Moorella sp. HUC22-1. Biotechnol Lett 26:1607–1612. doi:10.1023/B:BILE.0000045661.03366.f2 CrossRefGoogle Scholar
  44. Stams AJM, Plugge CM, De Bok FAM, Van Houten BHGW, Lens P, Dijkman H, Weijma J (2005) Metabolic interactions in methanogenic and sulfate-reducing bioreactors. Water Sci Technol 52:13–20Google Scholar
  45. Steinbusch KJJ, Hamelers HVM, Schaap JD, Kampman C, Buisman CJN (2010) Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ Sci Technol 44:513–517. doi:10.1021/es902371e CrossRefGoogle Scholar
  46. Su M, Jiang Y, Li D (2013) Production of acetate from carbon dioxide in bioelectrochemical systems based on autotrophic mixed culture. J Microbiol Biotechnol 23:1140–1146CrossRefGoogle Scholar
  47. Talbot P, Gortares MP, Lencki RW, de la Noüe J (1991) Absorption of CO2 in algal mass culture systems: a different characterization approach. Biotechnol Bioeng 37:834–842. doi:10.1002/bit.260370907 CrossRefGoogle Scholar
  48. Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23:364–381. doi:10.1016/j.copbio.2011.10.008 CrossRefGoogle Scholar
  49. Treybal RE (1981) Mass-transfer operations, 3 edn. McGraw-Hill, IncGoogle Scholar
  50. Vega JL, Prieto S, Elmore BB, Clausen EC, Gaddy JL (1989) The biological production of ethanol from synthesis gas. Appl Biochem Biotechnol 20-21:781–797. doi:10.1007/BF02936525 CrossRefGoogle Scholar
  51. Whipple DT, Finke EC, Kenis PJA (2010) Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH. Electrochem Solid-State Lett 13:B109. doi:10.1149/1.3456590 CrossRefGoogle Scholar
  52. Ying K, Al-mashhadani MKH, Hanotu JO, Gilmour DJ, Zimmerman WB (2013) Enhanced mass transfer in microbubble driven airlift bioreactor for microalgal culture. Engineering 2013:735–743. doi:10.4236/eng.2013.59088 CrossRefGoogle Scholar
  53. Zhang F, Cheng S, Pant D, Bogaert GV, Logan BE (2009) Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem Commun 11:2177–2179. doi:10.1016/j.elecom.2009.09.024 CrossRefGoogle Scholar
  54. Zhang K, Miyachi S, Kurano N (2001) Photosynthetic performance of a cyanobacterium in a vertical flat-plate photobioreactor for outdoor microalgal production and fixation of CO2. Biotechnol Lett 23:21–26. doi:10.1023/A:1026737000160 CrossRefGoogle Scholar
  55. Zhang X, Pant D, Zhang F, Liu J, He W, Logan BE (2014) Long-term performance of chemically and physically modified activated carbons in air cathodes of microbial fuel cells. ChemElectroChem 1:1859–1866. doi:10.1002/celc.201402123 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Separation and Conversion TechnologiesFlemish Institute for Technological Research (VITO)MolBelgium
  2. 2.Sub-department of Environmental TechnologyWageningen UniversityWageningenThe Netherlands

Personalised recommendations