Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 24, pp 23468–23484 | Cite as

Trajectories of river chemical quality issues over the Longue Durée: the Seine River (1900S–2010)

  • M. Meybeck
  • L Lestel
  • C. Carré
  • G. Bouleau
  • J. Garnier
  • J. M. Mouchel
Spatial and temporal patterns of anthropogenic influence in a large river basin. A multidisciplinary approach

Abstract

River quality trajectories are presented for (i) organic pollution, (ii) eutrophication, (iii) nitrate pollution, and (iv) metal contamination over the Longue Durée (130 to 70 years). They are defined by a quantified state indicator (S) specific to each issue, compared to drivers (D) or pressures (P) and to social responses (R) that reflect the complex interactions between society and river quality. The Lower Seine River, naturally sensitive to anthropogenic pressures, greatly impacted by Paris urban growth, industrialization, and intensive agriculture, and well documented by the PIREN-Seine 25-year research program, was chosen to illustrate these trajectories. State indicators, dissolved oxygen, algal pigments, nitrate, and heavy metals (Cd, Cr, Hg, Pb, Zn) in sediments have only been monitored by river basin authorities since 1971. Therefore, their past changes have been reconstructed using three approaches: (i) reassessment of historical sources, (ii) pressure-state models that reconstruct past water quality, and (iii) sedimentary archives of past persistent contamination from dated floodplain cores. The indicators were then transformed into river quality status using contemporary water quality criteria throughout these records. Each environmental issue shows specific trajectories because each has its own relationship between the issue evidence and the social response, but all are characterized by very poor quality in the past, largely ignored: the long-term summer hypoxia (<1880–1995), the summer eutrophication peak (1965–2005), the growing nitrate level since the 1950s, recently stabilized but still high, and the extreme metal contamination (>1935–2000) that peaked in the 1960s. The efficiency of social responses has been highly variable but more efficient in the last 15–25 years.

Keywords

River quality trajectory Seine River Organic pollution Nitrate Eutrophication metals 

Notes

Acknowledgements

This paper was funded by the Makara project on the social construction of water quality (ANR-12-SENV-0009-01). It was based on 25 years of interdisciplinary research on the Seine River and its basin within the CNRS PIREN-Seine basin, initiated by G. de Marsily and continued by G. Billen and J.M. Mouchel and supported by many public and private actors in the water sector of this basin. The illustrations were made by Aurélien Baro. Special thanks are extended to Gilles Billen and Sabine Barles who provided certain parts of the figures.

References

  1. Agence de l’Eau Seine Normandie (ed.) (1976) Les Bassins de la Seine et des cours d’eau normands. 10 vols, 1 Atlas (in French)Google Scholar
  2. Agence de l’Eau Seine Normandie (1989) Eutrophisation, rapport 89–1071 (in French)Google Scholar
  3. Aissa-Grouz A, Garnier J, Billen G, Mercier B, Martinez A (2015) The response of river nitrification to changes in wastewater treatment (the case of the lower Seine River downstream from Paris). Int J Lim 51:351–364. doi: 10.1051/limn/2015031 CrossRefGoogle Scholar
  4. Albert RC (1988) The historical context of water quality management for the Delaware estuary? Estuaries 11:99–107CrossRefGoogle Scholar
  5. Anglade J, Billen G, Garnier J, Makridis T, Puech T, Tittel C (2015) Agro-environmental performance of organic compared to conventional cash crop farming in the Seine watershed. Agric Syst 139:82–92CrossRefGoogle Scholar
  6. Arrêté du 23 décembre 2005 portant révision des zones sensibles dans le bassin Seine-Normandie (in French)Google Scholar
  7. Arrêté du 25 janvier 2010 établissant le programme de surveillance de l’état des eaux en application de l’article R. 212–22 du code de l’environnement (in French)Google Scholar
  8. Barles S (2007) Urban metabolism and river systems: an historical perspective—Paris and the Seine, 1790–1970. Hydrol Earth Syst Sci 11:1757–1769CrossRefGoogle Scholar
  9. Barles S, Lestel L (2007) The nitrogen question urbanization, industrialization, and river quality in Paris, 1830–1939. J Urban Hist 33(5):794–812CrossRefGoogle Scholar
  10. Barroin G (1995) Les phosphates, ou comment manipuler la science. La Recherche 281:56–60 (in French)Google Scholar
  11. Bellanger E (2010) Assainir l’agglomération parisienne: histoire d’une politique publique interdépartementale de l’assainissement, XIXe-XXe siècles. Editions de l’Atelier, Ivry-sur-Seine, 351 p (in French)Google Scholar
  12. Belliard J, Marchal J, Ditche JM, Tales E, Sabatié J, Baglinière JL (2009) Return of adult anadromous Allis shad (Alosa alosa, L.) in the river Seine, France: a sign of river recovery? River Res Appl 25:788–794CrossRefGoogle Scholar
  13. Benedetti E (1976) Hygiène de l’eau et pollution. In : Agence de l’Eau Seine Normandie (ed.) Les Bassins de la Seine et des cours d’eau normands. Tome 2, fascicule 8. 192 p (in French)Google Scholar
  14. Billen G, Garnier J (2000) Nitrogen transfer through the Seine drainage network: a budget based on the application of the RIVERSTRAHLER Model. Hydrobiologia 410:139–150CrossRefGoogle Scholar
  15. Billen G, Garnier J (2007) River basin nutrient delivery to the coastal sea: assessing its potential to sustain new production of non-siliceous algae. Mar Chem 106:148–160. doi: 10.1016/j.marchem.2006.12.017 CrossRefGoogle Scholar
  16. Billen G, Cavelier C, Dessery S, Lancelot C, Meybeck M, Somville M (1984) Evolution de la qualité de la rivière Oise lors de la rétention dans le bassin de storage de Méry, France. Verhandlungen-Internationale Vereinigung für Theoretische und Angewandte Limnologie 22:1510–1515, in FrenchGoogle Scholar
  17. Billen G, Garnier J, Hanset P (1994) Modelling phytoplankton development in whole drainage networks: the RIVERSTRAHLER model applied to the Seine river system. Hydrobiologia 289:119–137CrossRefGoogle Scholar
  18. Billen G, Garnier J, Ficht A, Cun C (2001) Modelling the response of water quality in the Seine Estuary to human activity in its watershed over the last 50 years. Estuaries 24:977–993CrossRefGoogle Scholar
  19. Billen G, Garnier J, Mouchel JM, Silvestre M (2007a) The Seine System: introduction to a multidisciplinary approach of the functioning of a regional river system. Sci Total Environ 375:1–12CrossRefGoogle Scholar
  20. Billen G, Garnier J, Nemery J, Sebilo M, Sferratore A, Benoit P, Barles S, Benoit M (2007b) A long term view of nutrient transfers through the Seine river continuum. Sci Total Environ 275:80–97CrossRefGoogle Scholar
  21. Billen G, Garnier J, Benoît M, Anglade J (2013) La cascade de l’azote dans les territoires de grande culture du Nord de la France. Cah Agric 22:272–81. doi: 10.1684/agr.2013.0640 (in French)CrossRefGoogle Scholar
  22. Bouleau G, Argillier C, Souchon Y, Barthélémy C, Babut M (2009) How ecological indicators construction reveals social changes—the case of lakes and rivers in France. Ecol Indic 9(6):1198–1205CrossRefGoogle Scholar
  23. Bouleau G, Marchal PL, Meybeck M, Lestel L (2016). La construction politique d’un espace de commune mesure pour la qualité des eaux superficielles. L’exemple de la France (1964) et de l’Union Européenne (2000), Développement durable et territoires (in press) (in French)Google Scholar
  24. Bouni C, Laurans Y, Larré L (1991) Détermination pour la collectivité nationale des coûts et dommages de toutes sortes entrainés par l’eutrophisation des eaux. Etude Interagence Hors série, 333p (in French)Google Scholar
  25. Boust D, Lesueur P, Berthe T (2012) Rhapsodie. Reconstitution historique des apports particulaires à la Seine par l’observation de leur intégration sédimentaire. Rapport Seine-Aval 4, 163p (in French)Google Scholar
  26. Brémond R, Vuichard R (1973) Paramètres de la qualité des eaux. Ministère de la Protection de la Nature et de l’Environnement. Documentation Française, Paris, in FrenchGoogle Scholar
  27. Brion N, Billen G, Guezennec L, Ficht A (2000) Distribution of nitrifying activity in the Seine River (France) from Paris to the estuary. Estuaries 23(5):669–82CrossRefGoogle Scholar
  28. Carbiener R (1990) Compositions lessivielles avec ou sans phosphates et protection des milieux aquatiques. Rapport au secrétaire d’Etat auprès du Premier Ministre chargé de l’Environnement, 182p (in French)Google Scholar
  29. Carbonaro-Lestel L, Meybeck M (2009) La mesure de la qualité chimique de l’eau, 1850–1970. La Houille Blanche 3:25–30 (in French)CrossRefGoogle Scholar
  30. Carré C (2016) Divergences et convergences d’une gestion métropolitaine du cycle urbain de l’eau. In Lestel L, Carré C (eds) Comment les métropoles ont sacrifié leurs rivières : Berlin, Bruxelles, Milan et Paris (1850 – 2010), Editions Quae (in press) (in French)Google Scholar
  31. Carré C, Mouchel JM, Servais P (2016) Le raccordement à l’égout des matières de vidange de la banlieue parisienne : gestion et impacts sur la Seine. In Lestel L, Carré C (eds) Comment les métropoles ont sacrifié leurs rivières : Berlin, Bruxelles, Milan et Paris (1850 – 2010), Editions Quae (in press) (in French)Google Scholar
  32. Cébron A, Berthe T, Garnier J (2003) Nitrification and nitrifying bacteria in the lower Seine River and estuary (France). Appl Environ Microb 69(12):7091–7100CrossRefGoogle Scholar
  33. Chapman DV (ed) (1992) Water quality assessments: a guide to the use of biota, sediments and water in environmental monitoring. Chapman & Hall, London, 585 pGoogle Scholar
  34. Chesterikoff A, Carru AM, Garban B, Ollivon D, Chesterikoff C (1973) La pollution de la Basse-Seine par le mercure (du Pecq à Tancarville). La Tribune du CEBEDEAU 355(356):1–8 (in French)Google Scholar
  35. Chiffoleau JF (coord.) (1999) La contamination métallique de l’estuaire de la Seine. Programme Scientifique Seine Aval, Cahier 8 (in French)Google Scholar
  36. Chiffoleau JF, Cossa D, Auger D, Truquet I (1994) Trace metal distribution, partition and fluxes in the Seine estuary (France) in low discharge regime. Mar Chem 47(2):145–158CrossRefGoogle Scholar
  37. Cioc M (2002) The Rhine, an eco-biography, 1815–2000. Univ. Washington Press, Seattle, p 263Google Scholar
  38. Claisse D, Joanny M, Quintin JY (1992) Le réseau national d’observation de la qualité du milieu marin (RNO). Analusis 20(6):19–22 (in French)Google Scholar
  39. Coin L (1963) Atlas de la pollution en France métropolitaine. Secrétariat Permanent Pour l’étude des problèmes de l’eau. La Documentation Française, Paris, p 126, in FrenchGoogle Scholar
  40. Crouzet P (1983) L’eutrophisation de la Loire. Water Supply 1(1):134–144 (in French)Google Scholar
  41. Crouzet P, Le Gall G, Meybeck M (2002) Flux à la mer: trop d’azote, mais moins de phosphore. Les données de l’environnement, IFEN 72:1–4 (in French)Google Scholar
  42. Cugier P, Billen G, Guillaud JF, Garnier J, Ménesguen A (2005) Modelling the eutrophication of the Seine Bight (France) under historical, present and future riverine nutrient loading. J Hydrol 304(1):381–396CrossRefGoogle Scholar
  43. Cun C, Vilagines R (1997) Time series analysis on chlorides, nitrates, ammonium and dissolved oxygen concentrations in the Seine river near Paris. Sci Total Environ 208(1):59–69CrossRefGoogle Scholar
  44. Dessery S, Dulac C, Laurenceau JM, Meybeck M (1984) Evolution of algal and detrital components in the particulate organic carbon of three rivers from the Bassin Parisien. Archiv für Hydrobiologie 100(2):235–260Google Scholar
  45. Dodds WK, Jones JR, Welch EB (1998) Suggested classification of stream trophic state: distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Res 32:1455–1462CrossRefGoogle Scholar
  46. EEA (1995) Inland Waters-Europe’s Environment: The Dobris Assessment 1994, European Environmental Agency, chapter 5Google Scholar
  47. Elbaz-Poulichet F (1988) Apports fluviatiles et estuariens de plomb, cadmium et cuivre aux océans, comparaison avec l’apport atmosphérique. Thèse Université Pierre et Marie Curie (in French)Google Scholar
  48. Elbaz-Poulichet F, Holliger P, Huang WW, Martin JM (1984) Lead cycling in estuaries, illustrated by the Gironde estuary, France. Nature 308:409–414CrossRefGoogle Scholar
  49. Even S, Poulin M, Garnier J, Billen G, Servais P, Chesterikoff A, Coste M (1998) River ecosystem modelling: application of the PROSE model to the Seine river (France). Hydrobiologia 373(374):27–45CrossRefGoogle Scholar
  50. Fernandez S, Bouleau G, Treyer S (2014) Bringing politics back into water planning scenarios in Europe. J Hydrol 518:17–27CrossRefGoogle Scholar
  51. Figueres G, Martin JM, Meybeck M, Seyler P (1985) A comparative study of mercury contamination in the Tagus Estuary (Portugal) and major French Estuaries (Gironde, Loire, Rhône). Estuarine Coastal Shelf Sci 20(2):183–203CrossRefGoogle Scholar
  52. Förstner U, Müller G (1973) Heavy metal accumulation in river sediments: a response to environmental pollution. Geoforum 4(2):53–61CrossRefGoogle Scholar
  53. Fustec E, Schenck C, Cloots-Hirsch AR, Soulié M, Bouton D (1991) Les nitrates dans les vallées fluviales CNRS-PIREN and Ministère de l’environnement, 52pp (in French)Google Scholar
  54. Garcier RJ (2007) Rivers we can’t bring ourselves to clean–historical insights into the pollution of the Moselle River (France), 1850–2000. Hydrol Earth Syst Sci Discuss 11(6):1731–1745CrossRefGoogle Scholar
  55. Garnier J, Billen G, Coste M (1995) Seasonal succession of diatoms and Chlorophyceae in the drainage network of the river Seine: Observations and modelling. Limnol Oceanogr 40:750–765CrossRefGoogle Scholar
  56. Garnier J, Servais P, Billen G, Akopian M, Brion N (2001) The oxygen budget in the Seine estuary: balance between photosynthesis and degradation of organic matter. Estuaries 24(6):964–977CrossRefGoogle Scholar
  57. Garnier J, Némery J, Billen G, Théry S (2005) Nutrient dynamics and control of eutrophication in the Marne River system: modelling the role of exchangeable phosphorus. J Hydrol 304:397–412CrossRefGoogle Scholar
  58. Garnier J, Laroche L, Pinault S (2006) Determining the domestic specific loads of two wastewater plants of the Paris conurbation (France) with contrasted treatments: a step for exploring the effects of the application of the European Directive. Water Res 40:3257–3266CrossRefGoogle Scholar
  59. Garnier J, Billen G, Cébron A (2007) Modelling nitrogen transformations in the lower Seine river and estuary (France): impact of wastewater release on oxygenation and N2O emission. Hydrobiologia 588(1):291–302CrossRefGoogle Scholar
  60. Garnier J, Passy P, Thieu V, Callens J, Silvestre M, Billen G (2013) Fate of nutrients in the aquatic continuum of the Seine River and its estuary: modelling the impacts of human activity changes. In: Bianchi TS, Allison MA, Cai WJ (eds) The watershed biogeochemical dynamics at large river-coastal interfaces: linkages with global climate change. Cambridge University Press. ISBN 978-1-107-20257-7. 671 pGoogle Scholar
  61. Gérardin AC (1874) Rapport sur l’altération, la corruption et l’assainissement des rivières, Imp. Nationale (in French)Google Scholar
  62. Grosbois C, Meybeck M, Horowitz A, Ficht A (2006) The spatial and temporal trends of Cd, Cu, Hg, Pb and Zn in Seine River floodplain deposits (1994–2000). Sci Total Environ 356(1):22–37CrossRefGoogle Scholar
  63. Hardenbicker P, Rolinski S, Weitere M, Fischer H (2014) Contrasting long-term trends and shifts in phytoplankton dynamics in two large rivers. Int Rev Hydrobiol 99(4):287–299CrossRefGoogle Scholar
  64. Hénin S (1985) Rapport du groupe de travail Activités Agricoles et Qualité des Eaux. Ministère de l’Agriculture et Ministère de l’Environnement, Paris (in French)Google Scholar
  65. Horowitz AJ (1991) A primer on sediment-trace element chemistry No. 91–76. US Geological Survey; Books and Open-File Reports SectionGoogle Scholar
  66. Horowitz AJ, Meybeck M, Idlafkih Z, Biger E (1999) Variations in trace element geochemistry in the Seine River Basin based on floodplain deposits and bed sediments. Hydrol Process 13(9):1329–1340CrossRefGoogle Scholar
  67. IFEN (2006) Etat de l’environnement en France. Institut Français de l’Environnement, Orléans (in French)Google Scholar
  68. Khalanski M (1984) Evaluation de la biomasse phytoplanctonique des eaux courantes par le dosage de la chlorophylle. Verhandlung Int. Vereiningung Limnologie 22:2010–2019 (in French)Google Scholar
  69. Khalanski M, Renon JP (1977) Evolution de la teneur en pigments planctoniques dans la Loire entre Dampierre-en-Burly et Montsoreau. Cah Lab Montereau 5:73–84 (in French)Google Scholar
  70. Koch P (1969) Une amorce insidieuse dans la voie de la pollution des cours d’eau : l’eutrophisation. Tech Sci Municipales 64(1):17–24 (in French)Google Scholar
  71. Lacroix A (1995) Des solutions agronomiques à la pollution azotée. Cah Agric 4(5):333–342 (in French)Google Scholar
  72. Lancelot C, Thieu V, Polard A, Garnier J, Billen G, Hecq W, Gypens N (2011) Ecological and economic effectiveness of nutrient reduction policies on coastal Phaeocystis colony blooms in the Southern North Sea: an integrated modeling approach. Sci Total Environ 409:2179–2191. doi: 10.1016/j.scitotenv.2011.02.023 CrossRefGoogle Scholar
  73. Lassaletta L, Billen G, Grizzetti B, Anglade J, Garnier J (2014) 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ Res Lett 9(10):1–9, 105011CrossRefGoogle Scholar
  74. Le Cloarec MF, Bonté PH, Lestel L, Lefèvre I, Ayrault S (2011) Sedimentary record of metal contamination in the Seine River during the last century. Phys Chem Earth Parts A/B/C 36(12):515–529CrossRefGoogle Scholar
  75. Lequien A, Lesafre J, Allonier-Fernandes AS, Martinet F, Mesquita J, Roulier M, Lamy F, David J, Bacchi M (2016) Relations entre pressions et impacts et détermination statistique des facteurs de contrôle de la qualité des cours d’eau du bassin Seine-Normandie. TSM 1(2):52–69CrossRefGoogle Scholar
  76. Lestel L (2012) Non-ferrous metals (Pb, Cu, Zn) needs and city development: the Paris example (1815–2009). Reg Environ Change 12(2):311–23CrossRefGoogle Scholar
  77. Lestel L, Carré C (eds) (2016) Comment les métropoles ont sacrifié leurs rivières: Berlin, Bruxelles, Milan et Paris (1850 – 2010) (in French)Google Scholar
  78. Lestel L, Meybeck M, Thevenot DR (2007) Metal contamination budget at the river basin scale: an original Flux-Flow Analysis (F2A) for the Seine River. Hydrol Earth Sys Scie Discuss 11(6):1771–1781CrossRefGoogle Scholar
  79. Lestel L, Cuif M, Hagenmuller P, Labbas M, Carré C (2013) La transaction comme régulation des déversements industriels en rivière. Le cas de la région parisienne au XXe siècle. In : Letté M and Le Roux T (eds) Débordements industriels. Environnement, territoire et conflit (XVIII°-XXI° siècle), Presses Universitaires de Rennes, pp 223–243 (in French)Google Scholar
  80. Loizeau JL, Edder P, De Alencastro LF, Corvi C, Ramseier Gentile S (2013) La contamination du Léman par les micropolluants-Revue de 40 ans d’études. Archives des Sciences 66:117–136 (in French)Google Scholar
  81. Lorgeoux C, Moilleron R, Gasperi J, Ayrault S, Bonté P, Lefèvre I, Tassin B (2016) Temporal trends of persistent organic pollutants in dated sediment cores: chemical fingerprinting of the anthropogenic impacts in the Seine River basin, Paris. Sci Total Environ 541:1355–1363CrossRefGoogle Scholar
  82. Marchand M (2015) L’océan sous haute surveillance, Quae (in French)Google Scholar
  83. Marchandise P, Olió JL, Robbe D, Legret M (1982) Trace metal determination in river sediments and sewage sludges. Inter laboratory comparison of extraction techniques. Environ Technol 3(1–11):157–166CrossRefGoogle Scholar
  84. Mariotti A (1984) Utilisation des variations naturelles d’abondance isotopique en 15N pour tracer l’origine des pollutions des aquifères par les nitrates. Isotope Hydrol 1983:605–633 (in French)Google Scholar
  85. Mariotti A, Létolle R, Blavoux B, Chassaing B (1975) Détermination, par les teneurs naturelles en 15N, de l’origine des nitrates: résultats préliminaires sur le bassin de Melarchez (Seine et Marne). Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. Série D:423–426 (in French)Google Scholar
  86. Martin JM, Meybeck M, Salvadori F, Thomas A (1976) Pollution chimique des estuaires : état actuel des connaissances. Centre national d’exploitation des océans, Rapport scientifique technique n°22, 238 p (in French)Google Scholar
  87. Meybeck M (2001) Global alteration of riverine geochemistry under human pressure. In Ehlers E, Krafft T (eds) Understanding the earth system: compartments, processes and interactions. Springer Science & Business Media, pp 97–113Google Scholar
  88. Meybeck M (2003) Global analysis of river systems: from Earth system controls to Anthropocene syndromes. Philos Trans R Soc Lond B Biol Sci 358(1440):1935–1950CrossRefGoogle Scholar
  89. Meybeck M (2005) Looking for water quality. Hydrol Process 19(1):331–338CrossRefGoogle Scholar
  90. Meybeck M, Irlinger JP, Lunel S (1987) L’eutrophisation en France: origines, mécanismes et conséquences sur l’alimentation en eau potable. Fondation pour la qualité des eaux potables, 58 p, 3 annexes (in French)Google Scholar
  91. Meybeck M, Friedrich G, Thomas R, Chapman D (1992) Rivers. In: D. Chapman (ed.) Water quality assessments: a guide to the use of biota, sediments and water in environmental monitoring, pp 238–316Google Scholar
  92. Meybeck M, de Marsily G, Fustec E (1998) La Seine dans son basin. Fonctionnement écologique d’un système fluvial, Elsevier (in French)Google Scholar
  93. Meybeck M, Horowitz AJ, Grosbois C (2004) The geochemistry of Seine River Basin particulate matter: distribution of an integrated metal pollution index. Sci Total Environ 328(1):219–236CrossRefGoogle Scholar
  94. Meybeck M, Lestel L, Bonté P, Moilleron R, Colin JL, Rousselot O, Hervé D, de Pontevès C, Grosbois C, Thevenot DR (2007) Historical perspective of heavy metals contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine river basin (France) following a DPSIR approach (1950–2005). Sci Total Environ 375:204–31CrossRefGoogle Scholar
  95. Meybeck M, Lestel L, Briand C (2016) L’impact de l’agglomération parisienne sur le milieu aquatique de 1876 à 1937, dans les travaux de l’Observatoire de Montsouris, In: Lestel L, Carré C (eds) Comment les métropoles ont sacrifié leurs rivières : Berlin, Bruxelles, Milan et Paris (1850 – 2010), Editions Quae (in press) (in French)Google Scholar
  96. Middelkoop H (2000) Heavy-metal pollution of the river Rhine and Meuse floodplains in the Netherlands. Neth J Geosciences/Geologie en Mijnbouw 79(4):411–428CrossRefGoogle Scholar
  97. Minaudo C, Meybeck M, Moatar F, Gassama N, Curie F (2015) Eutrophication mitigation in rivers: 30 years of trends in spatial and seasonal patterns of biogeochemistry of the Loire River (1980–2012). Biogeosciences 12(8):2549–2563CrossRefGoogle Scholar
  98. Ministère de l’environnement (1985) Inventaire du degré de pollution des eaux superficielles. Rivières et canaux. Campagne 1981 et comparaison avec les campagnes 1971 et 1976 (in French)Google Scholar
  99. Miquel G (2001) Effet des métaux lourds sur l’environnement et la santé. Rapport 261, office parlementaire d’évaluation des choix scientifiques et technologiques (in French)Google Scholar
  100. Mouchel and Billen (eds) (2008–2015) a collection of booklets, http://sisyphe.upmc.fr/piren/
  101. Müller G (1979) Schwermetalle in den Sedimenten des Rheins—Veränderungen seit 1971. Umschau 79(24):778–783 (in German)Google Scholar
  102. Naves J, Bousque G, Leroy P, Hubert P, Vilagines R (1990) Evolution de la qualité de l’eau de la Seine à Ivry-Sur-Seine (France) de 1887 à 1986. In : Int. Symp. Application des modèles mathématiques à l’évolution des modifications de la qualité de l’eau, ENIT, Tunis, pp 7–12 (in French)Google Scholar
  103. Nisbet M, Verneaux J (1970) Composantes chimiques des eaux courantes. Discussion et proposition de classes en tant que bases d’interprétation des analyses chimiques. Annales de limnologie 6(2):161–190 (in French)CrossRefGoogle Scholar
  104. Oudin LC, Maupas D (1999) Système d’évaluation de la qualité de l’eau des cours d’eau, rapport de présentation SEQ-Eau (version 1). Étude Inter Agences 64 (in French)Google Scholar
  105. Oudin LC, Maupas D (2003) Système d’évaluation de la qualité de l’eau des cours d’eau SEQ-Eau, MEDD & Agences de l’eau, 40 p (in French)Google Scholar
  106. Passy P, Gypens N, Billen G, Garnier J, Lancelot C, Thieu V, Rousseau V, Callens J (2013) A Model reconstruction of riverine nutrient fluxes and eutrophication in the Belgian Coastal Zone since 1984. J Mar System 128:106–122. doi: 10.1016/j.jmarsys.2013.05.005 CrossRefGoogle Scholar
  107. Passy P, Le Gendre R, Garnier J, Cugier P, Callens J, Paris F, Billen G, Philippe Riou P, Romero E (2016) Eutrophication modelling chain for improved management strategies to prevent algal blooms in the Bay of Seine, Marine Ecology Progress Series 543:107–125, doi: 10.3354Google Scholar
  108. Pereira-Ramos L (1989) Exploitation critique des résultats d’analyses de métaux sur sédiments et bryophytes dans le bassin Seine-Normandie de 1979 à 1988. AESN Report. p 90 (in French)Google Scholar
  109. Rabalais NN, Turner RE, Justic D, Dortch Q, Wiseman WJ, Gupta BKS (1996) Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries 19(2):386–407CrossRefGoogle Scholar
  110. Robbe D (1981) Pollutions métalliques du milieu naturel. Guide méthodologique de leur étude à partir des sédiments. Rapport bibliographique. Rapport de recherche LCPC n°104, 88p (in French)Google Scholar
  111. Robbe D, Marchandise P, Thomas A (1983) Détermination de l’origine des pollutions métalliques par datation des carottes de sédiments. Bulletin de liaison des laboratoires des ponts et chaussées 127:81–92 (in French)Google Scholar
  112. Robbe D, Marchandise P, Thome C, Ruban G (1984) Campagne 1981 de l’inventaire national du degré de pollution des eaux superficielles. Interprétation des résultats obtenus sur les sédiments. Rapport du Laboratoire Central des Ponts et Chaussées, Bourguenais, France (in French)Google Scholar
  113. Rockström J, Falkenmark M, Allan T, Folke C, Gordon L, Jägerskog A, Kummu M, Lannerstad M, Meybeck M, Molden D, Postel S, Savenije HHG, Svedin U, Turton A, Varis O (2014) The unfolding water drama in the Anthropocene: towards a resilience-based perspective on water for global sustainability. Ecohydrology 7(5):1249–1261Google Scholar
  114. Romero E, Garnier J, Lassaletta L, Billen G, Le Gendre R, Riou P, Cugier P (2013) Large-scale patterns of river inputs in SW Europe: seasonal and interannual variations and potential eutrophication effects at the coastal zone. Biogeochemistry 113:481–505. doi: 10.1007/s10533-012-9778-0 CrossRefGoogle Scholar
  115. Romero E, Le Gendre R, Garnier J, Billen G, Fisson C, Silvestre M, Riou P (2016) Long-term water quality in the lower Seine: lessons learned over 4 decades of monitoring. Environ Sci Policy 58:141–154CrossRefGoogle Scholar
  116. Ruelland D, Billen G, Brunstein D, Garnier J (2007) SENEQUE: a multi-scaling GIS interface to the Riverstrahler model of the biogeochemical functioning of river systems. Sci Total Environ 375(1):257–273CrossRefGoogle Scholar
  117. Salesses J (1962) La pollution de la Seine à l’aval de Paris. Service de la Navigation de la Seine, 109 p. (in French)Google Scholar
  118. Santschi PH, Presley BJ, Wade TL, Garcia-Romero B, Baskaran M (2001) Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi river Delta, Galveston bay and Tampa bay sediment cores. Mar Environ Res 52(1):51–79CrossRefGoogle Scholar
  119. Scolari G, Vernet JP (1975) Premiers resultats de la pollution par le mercure et autres metaux lourds dans les sédiments du bassin du Rhône et du Léman. Bull ARPEA 7:21–57 (in French)Google Scholar
  120. Sebilo M, Mayer B, Nicolardot B, Pinay G, Mariotti A (2013) Long-term fate of nitrate fertilizer in agricultural soils. Proc Natl Acad Sci 110(45):18185–18189CrossRefGoogle Scholar
  121. Streeter HW, Phelps EB (1925) A Study of the pollution and natural purification of the Ohio river. III. Factors concerned in the phenomena of oxidation and reaeration, Public Health Bulletin no. 146, Reprinted by U.S. Department of Health, Education and Welfare, Public Health Service, 1958Google Scholar
  122. Tamian L (2008) Genèse du Rapport Hénin et emergence de la préoccupation environnementale dans la pensée agronomique française. Master 2 Mémoire, Lab. Etudes Rurales, Lyon 2 university, 141p. (in French)Google Scholar
  123. Thévenot D, Moilleron R, Lestel L, Gromaire MC, Rocher V, Cambier P, Bonté P, Colin JL, de Pontevès C, Meybeck M (2007) Critical budget of metal sources and pathways in the Seine river basin (1994–2003) for Cd, Cr, Cu, Hg, Ni, Pb and Zn. Sci Total Environ 375:180–203CrossRefGoogle Scholar
  124. Thévenot D, Lestel L, Tusseau-Vuillemin MH, Gonzales J L, Meybeck M (2009) Les métaux dans le bassin de la Seine-Comprendre d’où proviennent et comment circulent les métaux dans un bassin versant fortement exposé aux pressions humaines. Cahiers PIREN-Seine 3 (in French)Google Scholar
  125. Thieu V, Billen G, Garnier J (2009) Nutrient transfer in three contrasting NW European watersheds: the Seine, Somme, and Scheldt Rivers. A comparative application of the Seneque/Riverstrahler model. Water Res 43(6):1740–1754CrossRefGoogle Scholar
  126. Thieu V, Mayorga E, Billen G, Garnier J (2010) Subregional and downscaled global scenarios of nutrient transfer in river basins: Seine–Somme–Scheldt case study. Global Biogeochemical Cycles 24, GB0A10.Google Scholar
  127. Turner BL II, Clark WC, Kates RW, Richards JF, Matthews JT, Meyer WB (eds) 1990. The Earth as transformed by human action: global and regional changes in the biosphere over the past 300 years, CambridgeGoogle Scholar
  128. Van der Weijden CH, Middelburg JJ (1989) Hydrogeochemistry of the river Rhine: long term and seasonal variability, elemental budgets, base levels and pollution. Water Res 23(10):1247–1266CrossRefGoogle Scholar
  129. Vollenweider RA (1968) Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorous as factors in eutrophication. OECD, ParisGoogle Scholar
  130. Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467(7315):555–61CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. Meybeck
    • 1
  • L Lestel
    • 1
  • C. Carré
    • 2
  • G. Bouleau
    • 3
  • J. Garnier
    • 1
  • J. M. Mouchel
    • 1
  1. 1.Sorbonne Universités, UPMC Univ Paris 06, CNRS, EPHE, UMR 7619 MetisParisFrance
  2. 2.Université Paris1 Panthéon-Sorbonne, Laboratoire LADYSS—Laboratoire Dynamique Sociales et Recomposition des Espaces (UMR 7533)ParisFrance
  3. 3.IRSTEA Bordeaux, Unité environnement, territoires, infrastructuresCestasFrance

Personalised recommendations