Environmental Science and Pollution Research

, Volume 25, Issue 24, pp 23451–23467 | Cite as

Estimating ecosystem metabolism from continuous multi-sensor measurements in the Seine River

  • N. EscoffierEmail author
  • N. Bensoussan
  • L. Vilmin
  • N. Flipo
  • V. Rocher
  • A. David
  • F. Métivier
  • A. Groleau
Spatial and temporal patterns of anthropogenic influence in a large river basin. A multidisciplinary approach


Large rivers are important components of the global C cycle. While they are facing an overall degradation of their water quality, little remains known about the dynamics of their metabolism. In the present study, we used continuous multi-sensors measurements to assess the temporal variability of gross primary production (GPP) and ecosystem respiration (ER) rates of the anthropized Seine River over an annual cycle. Downstream from the Paris urban area, the Seine River is net heterotrophic at the annual scale (−226 gO2 m−2 year−1 or −264 gC m−2 year−1). Yet, it displays a net autotrophy at the daily and seasonal scales during phytoplankton blooms occurring from late winter to early summer. Multivariate analyses were performed to identify the drivers of river metabolism. Daily GPP is best predicted by chlorophyll a (Chla), water temperature (T), light, and rainfalls, and the coupling of daily GPP and Chla allows for the estimation of the productivity rates of the different phytoplankton communities. ER rates are mainly controlled by T and, to a lesser extent, by Chla. The increase of combined sewer overflows related to storm events during the second half of the year stimulates ER and the net heterotrophy of the river. River metabolism is, thus, controlled at different timescales by factors that are affected by human pressures. Continuous monitoring of river metabolism must, therefore, be pursued to deepen our understanding about the responses of ecosystem processes to changing human pressures and climate.


Continuous monitoring River metabolism Primary production Ecosystem respiration Phytoplankton Urban pressures 



This work was funded by the R2DS 2010 CarboSeine and PIREN-Seine research programs and also supported by a CIFRE grant awarded to N. Escoffier with Nke Instrumentation. L. Vilmin also benefited from a PhD fellowship funded by the Ile-de-France R2DS CarboSeine project. Most of the authors belong to the FR3020 FIRE (Fédération Ile-de-France de Recherche en Environnement). The authors thank the colleagues of the UMR 7245, Equipe CCE of the National Museum of Natural History for providing help on fluorometer calibration and phytoplankton analyses. The authors are also grateful to two reviewers for their useful comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11356_2016_7096_MOESM1_ESM.pdf (291 kb)
ESM 1 (PDF 290 kb)


  1. Acuna V, Giorgi A, Munoz I, Uehlinger U, Sabater S (2004) Flow extremes and benthic organic matter shape the metabolism of a headwater Mediterranean stream. Freshwater Biol 49:960–971CrossRefGoogle Scholar
  2. Aristegi L, Izagirre O, Elosegi A (2009) Comparison of several methods to calculate reaeration in streams, and their effects on estimation of metabolism. Hydrobiologia 635:113–124CrossRefGoogle Scholar
  3. Aufdenkampe A, Mayorga KE, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9:53–60CrossRefGoogle Scholar
  4. Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100CrossRefGoogle Scholar
  5. Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2:598–600CrossRefGoogle Scholar
  6. Beaulieu JJ, Arango CP, Balz DA, Shuster WD (2013) Continuous monitoring reveals multiple controls on ecosystem metabolism in a suburban stream. Freshwater Biol 58:918–937CrossRefGoogle Scholar
  7. Benson BB, Krause JD (1984) The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol Oceanogr 29(3):620–632CrossRefGoogle Scholar
  8. Bernot MJ, Sobota DJ, Hall RO, Mulholland PJ, Dodds WK, Webster JR, Tank JL, Ashkenas LR, Cooper LW, Dahm CN, Gregory SV, Grimm NB, Hamilton SK, Johnson SL, McDowell WH, Meyer JL, Peterson B, Poole GC, Valett HM, Arango C, Beaulieu JJ, Burgin AJ, Crenshaw C, Helton AM, Johnson L, Merriam J, Niederlehner BR, O’Brien JM, Potter JD, Sheibley RW, Thomas SM, Wilson K (2010) Inter-regional comparison of land-use effects on stream metabolism. Freshwater Biol 55:1874–1890CrossRefGoogle Scholar
  9. Bott TL, Montgomery DS, Newbold JD, Arscott DB, Dow CL, Aufdenkampe AK, Jackson JK, Kaplan LA (2006) Ecosystem metabolism in streams of the Catskill Mountains (Delaware and Hudson River watersheds) and Lower Hudson Valley. J N Am Benthol Soc 25:1018–1044CrossRefGoogle Scholar
  10. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789CrossRefGoogle Scholar
  11. Catherine A, Escoffier N, Belhocine A, Nasri AB, Hamlaoui S, Yepremian C, Bernard C, Troussellier M (2012) On the use of the FluoroProbe (R), a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs. Water Res 46:1771–1784CrossRefGoogle Scholar
  12. Cox BA (2003) A review of dissolved oxygen modelling techniques for lowland rivers. Sci Total Environ 314–316:303–334CrossRefGoogle Scholar
  13. Demars BOL, Thompson J, Russell Manson J (2015) Stream metabolism and the open diel oxygen method: Principles, practice, and perspectives. Limnol Oceanogr-Meth 13:356–374Google Scholar
  14. Dodds WK, Cole JJ (2007) Expanding the concept of trophic state in aquatic ecosystems: It’s not just the autotrophs. Aquat Sci 69:427–439CrossRefGoogle Scholar
  15. Dodds WK, Veach AM, Ruffing CM, Larson DM, Fischer JL, Costigan KH (2013) Abiotic controls and temporal variability of river metabolism: multiyear analyses of Mississippi and Chattahoochee River data. Freshwater Science 32:1073–1087CrossRefGoogle Scholar
  16. Duarte CM, Prairie YT (2005) Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8:862–870CrossRefGoogle Scholar
  17. EC (2000) European Commission Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off J Eur Commun L327:1–72Google Scholar
  18. Escoffier N, Bernard C, Hamlaoui S, Groleau A, Catherine A (2015) Quantifying phytoplankton communities using spectral fluorescence: the effects of species composition and physiological state. J Plankton Res 37(1):233–247CrossRefGoogle Scholar
  19. Even S, Poulin M, Mouchel JM, Seidl M, Servais P (2004) Modelling oxygen deficits in the Seine River downstream of combined sewer overflows. Ecol Model 173:177–196CrossRefGoogle Scholar
  20. Even S, Mouchel M, Servais P, Flipo N, Poulin M, Blanc S, Chabanel M, Paffoni C (2007) Modelling the impacts of combined sewer overflows on the river Seine water quality. Sci Total Environ 375:140–151CrossRefGoogle Scholar
  21. Falkowski PG, Raven JA (2007) Aquatic photosynthesis, second edition. Princeton University Press, Princeton, New Jersey, p 484Google Scholar
  22. Finlay JC (2011) Stream size and human influences on ecosystem production in river networks. Ecosphere 2(8):art87CrossRefGoogle Scholar
  23. Flipo N, Rabouille C, Poulin M, Even S, Tusseau-Vuillemin MH, Lalande M (2007) Primary production in headwater streams of the Seine basin: the Grand Morin river case study. Sci Total Environ 375:98–109CrossRefGoogle Scholar
  24. Garnier J, Billen G (2007) Production vs. respiration in river systems: An indicator of an “ecological status”. Sci Total Environ 375:110–124CrossRefGoogle Scholar
  25. Garnier J, Billen G, Coste M (1995) Seasonal succession of diatoms and chlorophyceae in the drainage network of the seine river—observations and modeling. Limnol Oceanogr 40:750–765CrossRefGoogle Scholar
  26. Garnier J, Servais P, Billen G, Akopian M, Brion N (2001) Lower Seine river and estuary (France) carbon and oxygen budgets during low flow. Estuaries 24:964–976CrossRefGoogle Scholar
  27. Hall RO, Beaulieu JJ (2013) Estimating autotrophic respiration in streams using daily metabolism data. Freshwater Science 32(2):507–516CrossRefGoogle Scholar
  28. Hall RO, Tank JL (2005) Correcting whole-stream estimates of metabolism for groundwater input. Limnol Oceanogr-Meth 3:222–229CrossRefGoogle Scholar
  29. Hall RO, Tank JL, Baker MA, Rosi-Marshall EJ, Hotchkiss er (2015) Metabolism, gas exchange and carbon spiraling in Rivers. Ecosystems DOI: 10.1007/s10021-015-9918-1Google Scholar
  30. Holtgrieve GW, Schindler DE, Branch TA, A’Mar ZT (2010) Simultaneous quantification of aquatic ecosystem metabolism and reaeration using a Bayesian statistical model of oxygen dynamics. Limnol Oceanogr 55:1047–1063CrossRefGoogle Scholar
  31. Hunt RJ, Jardine TD, Hamilton SK, Bunn SE (2012) Temporal and spatial variation in ecosystem metabolism and food web carbon transfer in a wet-dry tropical river. Freshwater Biol 57:435–450CrossRefGoogle Scholar
  32. Izagirre O, Agirre U, Bermejo M, Pozo J, Elosegi A (2008) Environmental controls of whole-stream metabolism identified from continuous monitoring of Basque streams. J N Am Benthol Soc 27:252–268CrossRefGoogle Scholar
  33. Kruskopf M, Flynn KJ (2007) Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytol 169:525–536CrossRefGoogle Scholar
  34. MATLAB (2012) Version 8.0. The MathWorks Inc., Natick, MassachusettsGoogle Scholar
  35. Maynard JJ, Dahlgren RA, O’Geen AT (2012) Quantifying spatial variability and biogeochemical controls of ecosystem metabolism in a eutrophic flow-through wetland. Ecol Eng 47:221–236CrossRefGoogle Scholar
  36. Millenium Ecosystem Assessment (2005) Ecosystems and human well-being: health synthesis., 64pp, WHO LibraryGoogle Scholar
  37. Mulholland PJ, Fellows CS, Tank JL, Grimm NB, Webster JR, Hamilton SK, Marti E, Ashkenas L, Bowden WB, Dodds WK, McDowell WH, Paul MJ, Peterson BJ (2001) Inter-biome comparison of factors controlling stream metabolism. Freshwater Biol 46:1503–1517CrossRefGoogle Scholar
  38. Needoba JA, Peterson TD, Johnson KS (2012) Method for the Quantification of Aquatic Primary Production and Net Ecosystem Metabolism using in situ Dissolved Oxygen Sensors. in Molecular Biological Technologies for Ocean Sensing. Springer Protocols Handbooks, Chapter 4, pp 73–101Google Scholar
  39. Odum HT (1956) Primary production in flowing waters. Limnol Oceanogr 1:102–117CrossRefGoogle Scholar
  40. Oliver RL, Merrick CJ (2006) Partitioning of river metabolism identifies phytoplankton as a major contributor in the regulated Murray River (Australia). Freshwater Biol 51:1131–1148CrossRefGoogle Scholar
  41. Raimonet M, Vilmin L, Flipo N, Rocher V, Laverman A (2015) Modeling the fate of nitrite in an urbanized river using experimentally obtained nitrifier growth parameters. Water Res 73:373–387CrossRefGoogle Scholar
  42. Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P, Guth P (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359CrossRefGoogle Scholar
  43. Reichert P, Uehlinger U, Acuna V (2009) Estimating stream metabolism from oxygen concentrations: effect of spatial heterogeneity. Journal of Geophysical Research-Biogeosciences 114Google Scholar
  44. Riley AJ, Dodds WK (2013) Whole-stream metabolism: strategies for measuring and modeling diel trends of dissolved oxygen. Freshwater Science 32:56–69CrossRefGoogle Scholar
  45. Roberts BJ, Mulholland PJ, Hill WR (2007) Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10:588–606CrossRefGoogle Scholar
  46. Servais PJ, Garnier J, Demarteau N, Brion N, Billen G (1999) Supply of organic matter and bacteria to aquatic ecosystems through wastewater effluents. Water Res 33:3521–3531CrossRefGoogle Scholar
  47. Staehr PA, Bade D, Van de Bogert MC, Koch GR, Williamson C, Hanson P, Cole JJ, Kratz T (2010) Lake metabolism and the diel oxygen technique: state of the science. Limnol Oceanogr-Meth 8:628–644CrossRefGoogle Scholar
  48. Stanley EH, Powers SM, Lottig NR, Buffam I, Crawford JT (2012) Contemporary changes in DOC human-dominated rivers: is there a role for DOC management? Freshwater Biol 57(Suppl 1):26–42CrossRefGoogle Scholar
  49. Strahler AN (1957) Quantitative analysis of watershed geomorphology. Transactions American Geophysical Union 38:913–920CrossRefGoogle Scholar
  50. Thibodeaux L, Poulin M, Even S (1994) A model for enhanced aeration of streams by motor vessels with application to the Seine river. J Hazard Mater 37:459–473CrossRefGoogle Scholar
  51. Townsend SA, Webster IT, Schult JH (2011) Metabolism in a groundwater-fed river system in the Australian wet/dry tropics: tight coupling of photosynthesis and respiration. J N Am Benthol Soc 30(3):603–620CrossRefGoogle Scholar
  52. Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314CrossRefGoogle Scholar
  53. Uehlinger U (2006) Annual cycle and inter-annual variability of gross primary production and ecosystem respiration in a floodprone river during a 15-year period. Freshwater Biol 51:938–950CrossRefGoogle Scholar
  54. Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) River continuum concept. Can J Fish Aquat Sci 37:130–137CrossRefGoogle Scholar
  55. Vighi M, Finizio A, Villa S (2006) The evolution of the environmental quality concept: From the US EPA red book to the European Water Framework Directive. Environ Sci Pollut R 13:9–14CrossRefGoogle Scholar
  56. Vilmin L, Flipo N, Escoffier N, Rocher V, Groleau A (2016) Carbon fate in a large temperate human-impacted river system: focus on benthic dynamics. Global Biogeochem CyclesGoogle Scholar
  57. Vilmin L, Flipo N, de Fouquet C, Poulin M (2015) Pluri-annual sediment budget in a navigated river system: the Seine River (France). Sci Total Environ 502:48–59CrossRefGoogle Scholar
  58. Vink S, Bormans M, Ford PW, Grigg NJ (2005) Quantifying ecosystem metabolism in the middle reaches of Murrumbidgee River during irrigation flow releases. Mar Freshwater Res 56:227–241CrossRefGoogle Scholar
  59. Walsh CJ, Roy AH, Feminella JW, Cottingham PD, Groffman PM, Morgan RP (2005) The urban stream syndrome: current knowledge and the search for a cure. J N Am Benthol Soc 24:706–723CrossRefGoogle Scholar
  60. Wenger SJ, Roy AH, Jackson CR, Bernhardt ES, Carter TL, Filoso S et al (2009) Twenty six key research questions in urban stream ecology: an assessment of the state of the science. J N Am Benthol Soc 28(4):1080–1098CrossRefGoogle Scholar
  61. Winkler LW (1888) Die besistimmung des in wasser gelosten sanerstoffen. Berichte der deutsche chemischen geschlschaft 21:2542–2855Google Scholar
  62. Young RG, Matthaei CD, Townsend CR (2008) Organic matter breakdown and ecosystem metabolism: functional indicators for assessing river ecosystem health. J N Am Benthol Soc 27:605–625CrossRefGoogle Scholar
  63. Yvon-Durocher G, Caffrey JM, Cescatti A, Dossena M, del Giorgio P, Gasol JM, Montoya JM, Pumpanen J, Staehr PA, Trimmer M, Woodward G, Allen AP (2012) Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487:472–476CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, UMR 7154 CNRSParisFrance
  2. 2.IPSO-FACTO, SCOP arl, Pôle Océanologie et LimnologieMarseilleFrance
  3. 3.Mines ParisTech, PSL Research University, Centre de GéosciencesFontainebleauFrance
  4. 4.Syndicat Interdépartemental pour l’Assainissement de l’Agglomération Parisienne, Direction du Développement et de la ProspectiveColombesFrance
  5. 5.Nke Instrumentation, Z.I. de KérandréHennebontFrance
  6. 6.Stream Biofilm and Ecosystem Research LaboratoryEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  7. 7.Department of Earth Sciences—Geochemistry, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations