Environmental Science and Pollution Research

, Volume 23, Issue 18, pp 18809–18822 | Cite as

Spatio-temporal variation in chemical characteristics of PM10 over Indo Gangetic Plain of India

  • S. K. Sharma
  • T. K. Mandal
  • M. K. Srivastava
  • A. Chatterjee
  • Srishti Jain
  • M. Saxena
  • B. P. Singh
  • Saraswati
  • A. Sharma
  • A. Adak
  • S. K.Ghosh
Research Article


The paper presents the spatio-temporal variation of chemical compositions (organic carbon (OC), elemental carbon (EC), and water-soluble inorganic ionic components (WSIC)) of particulate matter (PM10) over three locations (Delhi, Varanasi, and Kolkata) of Indo Gangetic Plain (IGP) of India for the year 2011. The observational sites are chosen to represent the characteristics of upper (Delhi), middle (Varanasi), and lower (Kolkata) IGP regions as converse to earlier single-station observation. Average mass concentration of PM10 was observed higher in the middle IGP (Varanasi 206.2 ± 77.4 μg m−3) as compared to upper IGP (Delhi 202.3 ± 74.3 μg m−3) and lower IGP (Kolkata 171.5 ± 38.5 μg m−3). Large variation in OC values from 23.57 μg m−3 (Delhi) to 12.74 μg m−3 (Kolkata) indicating role of formation of secondary aerosols, whereas EC have not shown much variation with maximum concentration over Delhi (10.07 μg m−3) and minimum over Varanasi (7.72 μg m−3). As expected, a strong seasonal variation was observed in the mass concentration of PM10 as well as in its chemical composition over the three locations. Principal component analysis (PCA) identifies the contribution of secondary aerosol, biomass burning, fossil fuel combustion, vehicular emission, and sea salt to PM10 mass concentration at the observational sites of IGP, India. Backward trajectory analysis indicated the influence of continental type aerosols being transported from the Bay of Bengal, Pakistan, Afghanistan, Rajasthan, Gujarat, and surrounding areas to IGP region.


PM10 Organic carbon Elemental carbon Water-soluble ions IGP 



The authors are thankful to the Director, CSIR-NPL, New Delhi, and Head Radio and Atmospheric Sciences Division, CSIR-NPL, New Delhi, for their encouragement and support for this study. The authors also acknowledge Council of Scientific and Industrial Research (CSIR), New Delhi, for providing financial support for this study (under CSIR-EMPOWER Project: OLP-102132). Authors are thankful to the anonymous reviewers for their constructive suggestions to improve the manuscript.

Supplementary material

11356_2016_7025_MOESM1_ESM.docx (748 kb)
ESM 1 (DOCX 747 kb)


  1. Behera SN, Sharma N (2010) Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment. Sci Total Environ 408:3569–3575CrossRefGoogle Scholar
  2. Bond TC, Doherty SJ, Fahey DW et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118:5380–5552CrossRefGoogle Scholar
  3. Chelani AB, Gajghate DG, Devotta S (2008) Source apportionment of PM10 in Mumbai, India using CMB model. Bull Environ Contam Toxicol 81:190–195CrossRefGoogle Scholar
  4. Chow JC, Watson JG, Chen LWA, Arnott WP, Moosmuller H (2004) Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environ Sci Technol 38:4414–4422CrossRefGoogle Scholar
  5. Cao JJ, Lee SC, Ho KF, Zhang XY, Zou SC, Fung K, Chow JC, Watson JG (2003) Characteristics of carbonaceous aerosol in Pearl River Delta region, China during 2001 winter period. Atmos Environ 37:1451–1460CrossRefGoogle Scholar
  6. Das M, Maiti SK, Mukhopadhyay U (2006) Distribution of PM2.5 and p M10–2.5 in PM10 fraction in ambient air due to vehicular pollution in Kolkata megacity. Environ Monit Assess 122(1–3):111–123CrossRefGoogle Scholar
  7. Datta A, Saud T, Goel A, Tiwari S, Sharma SK, Saxena M, Mandal TK (2010) Variation of ambient SO2 over Delhi. J Atmos Chem 65(2–3):127–143CrossRefGoogle Scholar
  8. Delhi Statistical Handbook (2012) Registered vehicles in Delhi. Directorate of Economics and Statistics. Govt. of National Capital, Delhi.
  9. Draxler, R. R., Rolph, G. D. (2003) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website ( NOAA Air Resources Laboratory, Silver Spring, MD
  10. Ferek RJ, Reid JS, Hobbs PV (1998) Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil. J Geophys Res 103(D24):32107–32118CrossRefGoogle Scholar
  11. Goyal P, Sidhartha (2002) Effect of winds on SO2 and SPM concentration in Delhi. Atmos Environ 36:2925–2930CrossRefGoogle Scholar
  12. Guinot B, Cachier H, Sciare J, Tong Y, Xin W, Jianhua Y (2007) Beijing aerosol: atmospheric interactions and new trends. J Geophys Res 112:D14314. doi: 10.1029/2006JD008195 CrossRefGoogle Scholar
  13. Guo S, Hu M, Wang ZB, Slanina J, Zhao YL (2010) Size-resolved aerosol water soluble Ioninc compositions in the summer of Beijing: implication of regional secondary formation. Atmos Chem Phys 10:947–959CrossRefGoogle Scholar
  14. Gupta AK, Karar K, Srivastava A (2007) Chemical mass balance source apportionment of PM10 and TSP in residential and industrial sites of an urban region of Kolkata, India. J Hazard Mater 142:279–287CrossRefGoogle Scholar
  15. Ho KF, Cao JJ, Lee SC, Kawamura K, Zhang R-J (2007) Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in urban atmosphere of China. J Geophys Res 112:D22S27. doi: 10.1029/2006JD008011 CrossRefGoogle Scholar
  16. Jacobson MZ (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409:695–697CrossRefGoogle Scholar
  17. Khare P, Baruah BP (2010) Elemental characterization and source identification of PM2.5 using multivariate analysis at the suburban site of North-East India. Atmos Res 98:148–162CrossRefGoogle Scholar
  18. Khillare PK, Balachandran S, Meena BR (2004) Spatial and temporal variation of heavy metals in atmospheric aerosol in India. Environ Monit Assess 90:1–21CrossRefGoogle Scholar
  19. Kholder MI, Hassan SK (2008) Weekday/weekend differences in ambient aerosol level and chemical characteristics of water soluble components in the city Centre. Atmos Environ 42:7483–7493CrossRefGoogle Scholar
  20. Li X, Wang S, Duan L, Hao J, Nie Y (2009) Carbonaceous aerosol emissions from household biofuel combustion in China. Environ Sci Technol 43:6076–6081CrossRefGoogle Scholar
  21. Liousse C, Penner JE, Chuang C, Walton JJ, Eddleman H, Cachier H (1996) A global three-dimensional model study of carbonaceous aerosol. J Geophys Res 101:19411–19432CrossRefGoogle Scholar
  22. Mandal P, Saud T, Sarkar R, Mandal A, Sharma SK, Mandal TK, Bassin JK (2014) High seasonal variation of atmospheric C and particulate concentrations in Delhi, India. Environ Chem Letts 12:225–230CrossRefGoogle Scholar
  23. Murari V, Kumar M, Barman SC, Banerjee T (2014) Temporal variability of MODIS aerosol optical depth and chemical characterization of airborne particulates in Varanasi, India. Environ Sci Pollut Res doi. doi: 10.1007/s11356-014-3418-2 Google Scholar
  24. Pandey P, Patel DK, Khan AH, Barman SC, Murthy RC, Kisku GC (2013) Temporal distribution of fine particulates (PM2.5, PM10), potentially toxic metals, PAHs and Metal-bound carcinogenic risk in the population of Lucknow City, India. J Environ Sci Health 48(7):730–745CrossRefGoogle Scholar
  25. Perrino C, Tiwari S, Catrambone M, Torre SD, Rantica E, Canepari S (2011) Chemical characterization of atmospheric PM in Delhi, India during different periods of the year including Diwali festival. Atmos Pollut Res 2:418–427CrossRefGoogle Scholar
  26. Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. JAPCA 56:709–742Google Scholar
  27. Pope CA, Ezzati M, Dockery DW (2009) Fine-particulate air pollution and life expectancy in the United States. New Engl J Med 360:376–386CrossRefGoogle Scholar
  28. Ram K, Sarin MM (2010) Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over northern India. J Aerosol Sci 41(1):88–98CrossRefGoogle Scholar
  29. Ram K, Sarin MM (2011) Day–night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: implications to secondary aerosol formation. Atmos Environ 45:460–468CrossRefGoogle Scholar
  30. Ram K, Sarin MM, Tripathi SN (2010) One-year record of carbonaceous aerosols from an urban location (Kanpur) in the Indo-Gangetic Plain: characterization, sources and temporal variability. J Geophys Res. doi: 10.1029/2010JD014188 Google Scholar
  31. Ram K, Sarin MM, Sudheer AK, Rengarajan R (2012) Carbonaceous and secondary aerosols during wintertime fog and haze over urban sites in the Indo-Gangetic Plain. Aero Air Qual Res 12:359–370Google Scholar
  32. Ramgolam K, Favez O, Cachier H, Gaudichet A, Marano F et al (2009) Size-partitioning of an urban aerosol to identify particle determinants involved in the proinflammatory response induced in airway epithelial cells. Part Fibre Toxicol 6:1–12CrossRefGoogle Scholar
  33. Rastogi N, Sarin MM (2006) Chemistry of aerosols over a semi arid region: evidence for acid neutralization by mineral dust. Geophys Res Lett 33:L23815. doi: 10.1029/2006 GL027708 CrossRefGoogle Scholar
  34. Salma I, Chi XG, Maenhaut W (2004) Elemental and organic carbon in urban canyon and background environments in Budapest, Hungary. Atmos Environ 38:2517–2528CrossRefGoogle Scholar
  35. Saud T, Singh DP, Mandal TK, Gadi R, Pathak H, Saxena M, Sharma SK, Gautam R, Mukherjee A, Bhatnagar RP (2011) Spatial distribution of biomass consumption as energy in rural areas of Indo-Gangetic plain. Biomass Bioenergy 35:932–941CrossRefGoogle Scholar
  36. Saud T, Gautam R, Mandal TK, Gadi R, Singh DP, Sharma SK, Dahiya M, Saxena M (2012) Emission estimates of organic and elemental carbon from household biomass fuel used over the Indo-Gangetic Plain (IGP), India. Atmos Environ 61:212–220CrossRefGoogle Scholar
  37. Saud T, Saxena M, Singh DP, Saraswati, Dahiya M, Sharma SK, Datta A, Gadi R, Mandal TK (2013) Spatial variation of chemical constituents of commonly used biomass fuels in rural areas of the Indo-Gangetic Plain (IGP), India. Atmos Environ 71:158–169CrossRefGoogle Scholar
  38. Schwartz J, Dockery DW, Neas LM (1996) Is daily mortality associated specifically with fine particle? J Air Pollut Control Assess 46:927–939Google Scholar
  39. Sen A, Ahammed YN, Banerjee T, Begam GR, Burah BP, Chatterjee A, Choudhuri AK, Dhir A, Das T, Dhayni PP, Deb NC, Gadi R, Ghosh S, Gupta A, Sharma KC, Khan AH, Kumari KM, Kumar M, Kuniyal JC, Lakhani A, Meena RK, Mahapatra PS, Naqvi SWA, Pal D, Pal S, Panda S, Rohtash, Saikia J, Saikia P, Sharma A, Sharma P, Saxena M, Shenoy DM, Vachaspati CV, Sharma SK, Mandal TK (2014) Atmospheric fine and coarse mode aerosols at different environments of India and the Bay of Bengal during winter-2014: implication of a coordinated campaign. Mapan-J Metro Soc India 29(4):273–284Google Scholar
  40. Sharma M, McBean EA, Ghosh U (1995) Prediction of atmospheric sulphate deposition at sensitive receptors in northern India. Atmos Environ 29:2157–2162CrossRefGoogle Scholar
  41. Sharma M, Kishore S, Tripathi SN, Behra SN (2007) Role of atmospheric ammonia in the formation of inorganic secondary particulate matter: a study at Kanpur, India. J Atmos Chem 58:1–17CrossRefGoogle Scholar
  42. Sharma SK, Datta A, Saud T, Mandal TK, Ahammed YN, Arya BC, Tiwari MK (2010) Study on concentration of ambient NH3 and interaction with some other ambient trace gases. Environ Monit Assess 162:225–235CrossRefGoogle Scholar
  43. Sharma SK, Singh AK, Saud T, Mandal TK, Saxena M, Singh S, Ghosh S, Raha S (2012a) Study on water soluble ionic composition of PM10 and trace gases over Bay of Bengal during W_ICARB campaign. Meteorog Atmos Phys 118:37–51CrossRefGoogle Scholar
  44. Sharma SK, Saxena M, Saud T, Korpole S, Mandal TK (2012b) Measurement of NH3, NO, NO2 and related particulates at urban sites of Indo Gangetic Plain (IGP) of India. J Sci Ind Res 71(5):360–362Google Scholar
  45. Sharma SK, Mandal TK, Saxena M, Rashmi, Rohtash, Sharma A, Gautam R (2014c) Source apportionment of PM10 by using positive matrix factorization at an urban site of Delhi, India. Urban Climate 10(4):656–670CrossRefGoogle Scholar
  46. Sharma SK, Kumar M, Rohtash, Gupta NC, Saraswati, Saxena M, Mandal TK (2014b) Characteristics of ambient ammonia over Delhi, India. Meteorog Atmos Phys 124:225–230CrossRefGoogle Scholar
  47. Sharma SK, Mandal TK, Saxena M, Rashmi, Datta A, Saud T (2014a) Variation of OC, EC, WSIC and trace metals of PM10 over Delhi. J Atmos Sol Terr Phys 113:10–22CrossRefGoogle Scholar
  48. Sharma SK, Mandal TK, Sharma C, Kuniyal JC, Joshi R, Dhayani PP, Rohtash, Sen A, Ghayas H, Gupta NC, Arya BC, Kumar A, Sharma P, Saxena M, Sharma A (2014d) Measurements of particulate (PM2.5), BC and trace gases over the northwestern Himalayan region of India. Mapan - J Meteorol Soc India 29(4):243–253Google Scholar
  49. Sharma SK, Mandal TK, Shenoy DM, Bardhan P, Srivastava MK, Chatterjee A, Saxena M, Saraswati, Singh BP, Ghosh SK (2015) Variation of stable carbon and nitrogen isotopes composition of PM10 over Indo Gangetic Plain of India. Bull Environ Contam Toxicol 95(5):661–669CrossRefGoogle Scholar
  50. Shridhar V, Khillare PS, Agarwal T, Ray S (2010) Metallic species in ambient particulate matter at rural and urban location of Delhi. J Hazard Mater 175:600–607CrossRefGoogle Scholar
  51. Song Y, Zhang Y, Xie S, Zeng L, Zheng M, Salmon LG, Shao M, Slanina S (2006) Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmos Environ 40(1):526–1537Google Scholar
  52. Tare V, Tripathi SN, Chinnam N, Srivastava AK, Dey S, Manar M, Kanawade VP, Aggarwal A, Kishore L, Lal RB, Sharma M (2006) Measurement of atmospheric parameters during Indian space research organization geosphere biosphere program land campaign II at a typical location in the Ganga Basin: 2 chemical properties. J Geophys Res 111:D23210. doi: 10.1029/2006/JD007279 CrossRefGoogle Scholar
  53. Tiwari S, Srivastava AK, Bisht DS, Bano T, Singh S, Behura S, Srivastava MK, Chate DM, Padmanabhamurthy B (2009) Black carbon and chemical characteristics of PM10 and PM2.5 at an urban site of North India. J Atmos Chem 62:193–209CrossRefGoogle Scholar
  54. Tiwari S, Chate DM, Pragya P, Ali K, Bisht DS (2012) Variations in Mass of the PM10, PM2.5 and PM1 during the Monsoon and the Winter at New Delhi. Aerosol Air Qual Res 12(1):20–29Google Scholar
  55. Utsunomiya A, Wakamastsu S (1996) Temperature and humidity dependence on aerosol composition in the northern Kyushu. Jpn Atmos Environ 30:2379–2386CrossRefGoogle Scholar
  56. Waked A, Favez O, Alleman LY, Piot C, Petit JE, Delaunay T et al (2014) Source apportionment of PM10 in a north-western Europe regional urban backgroung site (Lens, France) using positive matrix factorization and including primary biogenic emission. Atmos Chem Phys 14:3325–3346CrossRefGoogle Scholar
  57. Yamasoe MA, Artaxo P, Miguel AH, Allen AG (2000) Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. Atmos Environ 34:1641–1653CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • S. K. Sharma
    • 1
  • T. K. Mandal
    • 1
  • M. K. Srivastava
    • 2
  • A. Chatterjee
    • 3
  • Srishti Jain
    • 1
  • M. Saxena
    • 1
  • B. P. Singh
    • 2
  • Saraswati
    • 1
  • A. Sharma
    • 1
  • A. Adak
    • 3
  • S. K.Ghosh
    • 3
  1. 1.Radio and Atmospheric Sciences DivisionCSIR-National Physical LaboratoryNew DelhiIndia
  2. 2.Department of GeophysicsBanaras Hindu UniversityVaranasiIndia
  3. 3.Centre for Astroparticle Physics and Space SciencesKolkataIndia

Personalised recommendations