Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 19, pp 19071–19083 | Cite as

Assessment of sulfide production risk in soil during the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification process

  • L. Ghorbel
  • L. Coudert
  • Y. Gilbert
  • G. Mercier
  • J. F. BlaisEmail author
Research Article

Abstract

This study aimed to determine the potential of sulfide generation during infiltration through soil of domestic wastewater treated by a sulfur-utilizing denitrification process. Three types of soil with different permeability rates (K s = 0.028, 0.0013, and 0.00015 cm/s) were investigated to evaluate the potential risk of sulfur generation during the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification system. These soils were thoroughly characterized and tested to assess their capacity to be used as drainages for wastewaters. Experiments were conducted under two operating modes (saturated and unsaturated). Sulfate, sulfide, and chemical oxygen demand (COD) levels were determined over a period of 100 days. Despite the high concentration of sulfates (200 mg/L) under anaerobic conditions (ORP = −297 mV), no significant amount of sulfide was generated in the aqueous (<0.2 mg/L) or gaseous (<0.15 ppm) phases. Furthermore, the soil permeability did not have a noticeable effect on the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification system due to low contents of organic matter (i.e., dissolved organic carbon, DOC). The autotrophic denitrification process used to treat the domestic wastewater allowed the reduction of the concentration of biochemical oxygen demand (BOD5) below 5 mg/L, of DOC below 7 mg/L, and of COD below 100 mg/L.

Keywords

Domestic wastewater Autotrophic denitrification Infiltration Soil Sulfide production 

Abbreviations

BOD5

Biochemical oxygen demand after 5 days

COD

Chemical oxygen demand

DOC

Dissolved organic carbon

HRT

Hydraulic retention time

Ks

Permeability rate

ORP

Oxidation–reduction potential

SRB

Sulfate-reducing bacteria

SS

Suspended solids

Notes

Acknowledgments

The authors acknowledge the financial and technical support of Premier Tech Aqua and the support from the Research funds of Quebec Nature and Technology. The Natural Sciences and Engineering Research Council of Canada also contributed to this research. Sincere thanks are also extended to Robert Thomas and Ginette Bélanger for their contributions to this study. Sincere thanks are due to Myriam Chartier (M.Sc. and research agent) who helped a lot with the conception of the system and the day-to-day supervision during the experiment and analysis.

References

  1. Abhilash, Pandey BD, Natarajan KA (2015) Microbiology for minerals, metals, materials and the environment. CRC Press, Boca Raton, p 608. ISBN 9781482257298Google Scholar
  2. Alani AM, Faramarzi A, Mahmoodian M, Tee KF (2014) Prediction of sulphide build-up in filled sewer pipes. Environ Technol 35:1721–1728CrossRefGoogle Scholar
  3. Batchelor B, Lawrence AW (1978) A kinetic model for autotrophic denitrification using elemental sulfur. Water Res 12:1075–1084Google Scholar
  4. Beauchamp RO, Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA, Leber P (1984) A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 13:25–97CrossRefGoogle Scholar
  5. Bertolacini RJ, Barney JE (1957) Colorimetric determination of sulfate with barium chloranilate. Analytical Chemistry American Chemical Society 29:281–283.Google Scholar
  6. Biswas T (2012) Effect of linoleic acid and COD/SO4 2− ratio on anaerobic sulphate reduction in semi-continuous reactors. Thesis report, University of Windsor, Windsor, ON, Canada, 119 ppGoogle Scholar
  7. Brady NC, Weil RR (2008) The nature and properties of soils, 13th edn. Pearson Prentice Hall, Upper Saddle River, 960 pp. ISBN 0-13-016763-0Google Scholar
  8. Brand TPH, Roest K, Chen GH, Brdjanovic D, Loosdrecht MCM (2015) Occurrence and activity of sulphate reducing bacteria in aerobic activated sludge systems. World J Microbiol Biotechnol 31:507–516CrossRefGoogle Scholar
  9. Buchanan JR (2014) Decentralized wastewater treatment. In: Ahuja S (ed) Comprehensive water quality and purification. Elsevier, Waltham, pp 244–267CrossRefGoogle Scholar
  10. Canadian Agricultural Services Coordinating and Groupe de travail sur la classification des sols (2002) Le systeme canadien de classification des sols. CNRC-NRC, Presses scientifiques du CNRC, Ottawa, ON, p 202Google Scholar
  11. Canadian Water Network (2015) Assessment and management of environmental risks associated with decentralized rural wastewater management systems, Ontario, Canada, p 5Google Scholar
  12. Cao JY, Zhang GJ, Mao ZS, Fang ZH, Yang C, Han BL (2009) Influence of Mg2+ on the growth and activity of sulfate reducing bacteria. Hydrometallurgy 95:127–134CrossRefGoogle Scholar
  13. Castro HF, Williams NH, Ogram A (2000) Phylogeny of sulfate-reducing bacterial. FEMS Microbiol Ecol 31:1–9Google Scholar
  14. Chou CHSJ (2003) Hydrogen sulfide. World Health Organization, Geneva, Switzerland, p 41Google Scholar
  15. Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 13:454–458Google Scholar
  16. Colleran E, Finnegan S, Lens P (1995) Anaerobic treatment of sulphate-containing waste streams. Antonie Van Leeuwenhoek 67:29–46CrossRefGoogle Scholar
  17. Dar SA, Kleerebezem R, Stams AJM, Kuenen JG, Muyzer G (2008) Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Appl Microbiol Biotechnol 78:1045–1055CrossRefGoogle Scholar
  18. Doujaiji B, Al-Tawfiq JA (2010) Hydrogen sulfide exposure in an adult male. Ann Saudi Med 30:76–80Google Scholar
  19. Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882CrossRefGoogle Scholar
  20. Glass DC (1990) A review of the health effects of hydrogen sulphide exposure. Ann Occup Hyg 34:323–327CrossRefGoogle Scholar
  21. Gouvernement du Quebec (2015) Règlement sur l'évacuation et le traitement des eaux usées des résidences isolées, Québec, Canada, p 80Google Scholar
  22. Gutierrez O, Park D, Sharma KR, Yuan Z (2009) Effects of long-term pH elevation on the sulfatereducing and methanogenic activities of anaerobic sewer biofilms. Water Res 43:2549–2557Google Scholar
  23. Hao OJ, Chen JM, Huang L, Buglass RL (1996) Sulfate‐reducing bacteria. Crit Rev Environ Sci Technol 26:155–187CrossRefGoogle Scholar
  24. Hargett DL, Tyler EJ, Siegrist RL (1981) Soil infiltration capacity as affected by septic tank effluent application strategies. In: Small Scale Waste Management Project, University of Wisconsin–Extension, Wisconsin, 13 ppGoogle Scholar
  25. Jiang G, Gutierrez O, Sharma KR, Yuan Z (2010) Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems. Water Res 44:4241–4251CrossRefGoogle Scholar
  26. Lens PNL, Hulshoff Pol L (2004) Environmental technologies to treat sulfur pollution : principles and engineering. IWA Publishing, London, 547 pp. ISBN 1900222094 01/2000Google Scholar
  27. Lens PNL, Visser A, Janssen AJH, Pol LWH, Lettinga G (1998) Biotechnological treatment of sulfate-rich wastewaters. Crit Rev Environ Sci Technol 28:41–88CrossRefGoogle Scholar
  28. Lewandowski A (2013) Organic matter management. Soil Quality Institute, Natural Resources Conservation Service, USAGoogle Scholar
  29. Liu ZH, Maszenan AM, Liu Y, Ng WJ (2014) A brief review on possible approaches towards controlling sulfate-reducing bacteria (SRB) in wastewater treatment systems. Desalin Water Treat 53:2799–2807CrossRefGoogle Scholar
  30. Massoud MA, Tarhini A, Nasr JA (2009) Decentralized approaches to wastewater treatment and management: applicability in developing countries. J Environ Manage 90:652–659CrossRefGoogle Scholar
  31. McKinley JW, Siegrist RL (2011) Soil clogging genesis in soil treatment units used for onsite wastewater reclamation: a review. Crit Rev Environ Sci Technol 41:2186–2209CrossRefGoogle Scholar
  32. MDDEFP (2013) Étude d'impact économique du projet de règlement modifiant le règlement sur l'évacuation et le traitement des eaux usées des résidences isolées. Ministère du développement durable, de l'environnement, de la faune et des parcs, Canada, p 15Google Scholar
  33. Mockaitis G, Friedl GF, Rodrigues JAD, Ratusznei SM, Zaiat M, Foresti E (2010) Influence of feed time and sulfate load on the organic and sulfate removal in an ASBR. Bioresour Technol 101:6642–6650CrossRefGoogle Scholar
  34. Neculita CM, Zagury GJ (2008) Biological treatment of highly contaminated acid mine drainage in batch reactors: long-term treatment and reactive mixture characterization. J Hazard Mater 157:358–366Google Scholar
  35. Nguyen HH, Nguyen XH, Tran Y, Nguyen NT (2013) Factors effect to the sulfide generation rate in the To Lich River, Vietnam. ARPN J Eng Appl Sci 8:190–199Google Scholar
  36. Nielsen PH, Hvitved-Jacobsen T (1988) Effect of sulfate and organic matter on the hydrogen sulfide formation in biofilms of filled sanitary sewers. J Water Pollut Control Fed 60:627–634Google Scholar
  37. Nielsen PHR, Raukjaer K, Hvitved-Jacobsen T (1998) Sulfide production and wastewater quality in pressure mains. Water Sci Technol 37:97–104CrossRefGoogle Scholar
  38. Park K, Lee H, Phelan S, Liyanaarachchi S, Marleni N, Navaratna D, Jegatheesan V, Shu L (2014) Mitigation strategies of hydrogen sulphide emission in sewer networks—a review. Int Biodeter Biodegr 95(Part A):251–261CrossRefGoogle Scholar
  39. Partlo LA, Sainsbury RS, Roth SH (2001) Effects of repeated hydrogen sulphide (H2S) exposure on learning and memory in the adult rat. NeuroToxicology 22:177–189CrossRefGoogle Scholar
  40. Pomeroy R, Bowlus FD (1946) Progress report on sulfide control research. Sew Work J 18:597–640Google Scholar
  41. Québec, Service des eaux (2007) Traitement des eaux usées des résidences isolées guide technique. Service des eaux municipales, Direction des politiques de l'eau, Ministère du développement durable, de l'environnement et des parcs, Québec, p 22Google Scholar
  42. Reiffenstein RJ, Hulbert WC, Roth SH (1992) Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol 32:109–134CrossRefGoogle Scholar
  43. Siegrist RL, McCray JE, Lowe KS (2004) Wastewater infiltration into soil and the effects of infiltrative surface architecture. J Small Flows 5:29–39Google Scholar
  44. Suriyachan C, Nitivattananon V, Amin ATMN (2012) Potential of decentralized wastewater management for urban development: case of Bangkok. Habitat Int 36:85–92CrossRefGoogle Scholar
  45. Velasco A, Ramírez M, Volke-Sepúlveda T, González-Sánchez A, Revah S (2008) Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation. J Hazard Mater 151:407–413CrossRefGoogle Scholar
  46. Zhou W, Sun Y, Wu B, Zhang Y, Huang M, Miyanaga T, Zhang Z (2011) Autotrophic denitrification for nitrate and nitrite removal using sulfur–limestone. J Environ Sci 23:1761–1769CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • L. Ghorbel
    • 1
  • L. Coudert
    • 1
  • Y. Gilbert
    • 2
  • G. Mercier
    • 1
  • J. F. Blais
    • 1
    Email author
  1. 1.Institut national de la recherche scientifique (Centre Eau, Terre et Environnement)Université du QuébecQuébecCanada
  2. 2.PREMIER TECHRivière-du-LoupCanada

Personalised recommendations