Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effective degradation of rhodamine B by electro-Fenton process, using ferromagnetic nanoparticles loaded on modified graphite felt electrode as reusable catalyst: in neutral pH condition and without external aeration


Polytetrafluoroethylene/ferromagnetic nanoparticle/carbon black (PTFE/MNP/CB)-modified graphite felt (GF) was successfully applied as cathode for the mineralization of rhodamine B (RhB) in electro-Fenton (EF) process. The modified cathode showed high decolorization efficiency for RhB solution even in neutral pH condition and without external aeration, achieving nearly complete decolorization and 89.52 % total organic carbon (TOC) removal after 270-min oxidation with the MNP load 1.2 g at 50 A/m2. Moreover, the operational parameters (current density, MNP load, initial pH, and airflow rate) were optimized. After that, adsorption isotherm was also conducted to compare the absorption quantity of CB and carbon nanotube (CNT). Then, the surface morphologies of MNPs were characterized by transmission electron microscope (TEM), energy-dispersive X-ray detector (EDX), and Fourier transform infrared spectroscopy (FTIR); and the modified cathode was characterized by SEM and contact angle. Finally, the stability and reusability of modified cathode were tested. Result uncovered that the PTFE/MNP/CB-modified cathode has the potential for industrial application and the solution after treatment was easily biodegradable.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. A M et al. (2005) Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles Journal of Physical Chemistry B 109:19060–19063

  2. Barhoumi N, Labiadh L, Oturan MA, Oturan N, Gadri A, Ammar S, Brillas E (2015) Electrochemical mineralization of the antibiotic levofloxacin by electro-Fenton-pyrite process. Chemosphere 141:250–257. doi:10.1016/j.chemosphere.2015.08.003

  3. Bokare AD, Choi W (2014) Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J Hazard Mater 275:121–135. doi:10.1016/j.jhazmat.2014.04.054

  4. Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review Applied Catalysis B: Environmental 166–167:603–643. doi:10.1016/j.apcatb.2014.11.016

  5. Çelebi MS, Oturan N, Zazou H, Hamdani M, Oturan MA (2015) Electrochemical oxidation of carbaryl on platinum and boron-doped diamond anodes using electro-Fenton technology. Sep Purif Technol 156:996–1002. doi:10.1016/j.seppur.2015.07.025

  6. Dhakshinamoorthy A, Navalon S, Alvaro M, Garcia H (2012) Metal nanoparticles as heterogeneous Fenton catalysts. Chem Sus Chem 5:46–64. doi:10.1002/cssc.201100517

  7. Gao C, Li W, Morimoto H, Nagaok Y, Maekawa T (2006) Magnetic carbon nanotubes: synthesis by electrostatic self-assembly approach and application in biomanipulations. J Phys Chem b 110:7213–7220

  8. Gao Y, Wang Y, Zhang H (2015) Removal of rhodamine B with Fe-supported bentonite as heterogeneous photo-Fenton catalyst under visible irradiation. Appl Catal Environ 178:29–36. doi:10.1016/j.apcatb.2014.11.005

  9. Gong Y, Li J, Zhang Y, Zhang M, Tian X, Wang A (2016) Partial degradation of levofloxacin for biodegradability improvement by electro-Fenton process using an activated carbon fiber felt cathode. J Hazard Mater 304:320–328. doi:10.1016/j.jhazmat.2015.10.064

  10. Hammouda SB, Fourcade F, Assadi A, Soutrel I, Adhoum N, Amrane A, Monser L (2016) Effective heterogeneous electro-Fenton process for the degradation of a malodorous compound, indole, using iron loaded alginate beads as a reusable catalyst. Appl Catal Environ 182:47–58. doi:10.1016/j.apcatb.2015.09.007

  11. He J, Yang X, Men B, Bi Z, Pu Y, Wang D (2014) Heterogeneous Fenton oxidation of catechol and 4-chlorocatechol catalyzed by nano-Fe3O4: role of the interface. Chem Eng J 258:433–441. doi:10.1016/j.cej.2014.07.063

  12. He J, Yang X, Men B, Wang D (2016) Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials. Rev J Environ Sci 39:97–109. doi:10.1016/j.jes.2015.12.003

  13. Hou B, Han H, Jia S, Zhuang H, Xu P, Wang D (2015a) Heterogeneous electro-Fenton oxidation of catechol catalyzed by nano-Fe3O4: kinetics with the Fermi’s equation. J Taiwan Inst Chem Eng 56:138–147. doi:10.1016/j.jtice.2015.04.017

  14. Hou B, Han H, Zhuang H, Xu P, Jia S, Li K (2015b) A novel integration of three-dimensional electro-Fenton and biological activated carbon and its application in the advanced treatment of biologically pretreated Lurgi coal gasification wastewater. Bioresour Technol 196:721–725. doi:10.1016/j.biortech.2015.07.068

  15. Hou MF, Liao L, Zhang WD, Tang XY, Wan HF, Yin GC (2011) Degradation of rhodamine B by Fe(0)-based Fenton process with H2O2. Chemosphere 83:1279–1283. doi:10.1016/j.chemosphere.2011.03.005

  16. Hu X et al (2011) Adsorption and heterogeneous Fenton degradation of 17α-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution. Appl Catal Environ 107:274–283. doi:10.1016/j.apcatb.2011.07.025

  17. Iglesias O, Dios MAF, Tavares T, Sanromán MA, Pazos M (2015) Heterogeneous electro-Fenton treatment: preparation, characterization and performance in groundwater pesticide removal. J Ind Eng Chem 27:276–282. doi:10.1016/j.jiec.2014.12.044

  18. Jiang C-c, Zhang J-f (2007) Progress and prospect in electro-Fenton process for wastewater treatment. J Zhejiang Univ SCI A 8:1118–1125. doi:10.1631/jzus.2007.A1118

  19. Khataee AR, Zarei M, Moradkhannejhad L (2010) Application of response surface methodology for optimization of azo dye removal by oxalate catalyzed photoelectro-Fenton process using carbon nanotube-PTFE cathode. Desalination 258:112–119. doi:10.1016/j.desal.2010.03.028

  20. Labiadh L, Oturan MA, Panizza M, Hamadi NB, Ammar S (2015) Complete removal of AHPS synthetic dye from water using new electro-Fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst. J Hazard Mater 297:34–41. doi:10.1016/j.jhazmat.2015.04.062

  21. Le TXH, Bechelany M, Lacour S, Oturan N, Oturan MA, Cretin M (2015) High removal efficiency of dye pollutants by electron-Fenton process using a graphene based cathode. Carbon 94:1003–1011. doi:10.1016/j.carbon.2015.07.086

  22. Li H, Gong Y, Huang Q, Zhang H (2013) Degradation of Orange II by UV-assisted advanced Fenton process: response surface approach. Degradation Pathway, and Biodegradability. Ind Eng Chemistry Res 52:15560–15567. doi:10.1021/ie401503u

  23. Liu S, Gu Y, Wang S, Zhang Y, Fang Y, Johnson DM, Huang Y (2013) Degradation of organic pollutants by a Co3O4-graphite composite electrode in an electro-Fenton-like system. Chinese Sci Bull 58:2340–2346. doi:10.1007/s11434-013-5784-4

  24. Lodha B, Chaudhari S (2007) Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions. J Hazard Mater 148:459–466. doi:10.1016/j.jhazmat.2007.02.061

  25. Martins RC, Lopes DV, Quina MJ, Quinta-Ferreira RM (2012) Treatment improvement of urban landfill leachates by Fenton-like process using ZVI. Chem Eng J 192:219–225. doi:10.1016/j.cej.2012.03.053

  26. Moreira FC, Garcia-Segura S, Vilar VJP, Boaventura RAR, Brillas E (2013) Decolorization and mineralization of Sunset Yellow FCF azo dye by anodic oxidation, electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton processes. Appl Catal Environ 142–143:877–890. doi:10.1016/j.apcatb.2013.03.023

  27. Munoz M, de Pedro ZM, Casas JA, Rodriguez JJ (2015) Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation. Rev Appl Catalysis B Environ 176–177:249–265. doi:10.1016/j.apcatb.2015.04.003

  28. Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2011) Heterogeneous Fenton catalysts based on activated carbon and related materials. Chem Sus C hem 4:1712–1730. doi:10.1002/cssc.201100216

  29. Nidheesh PV, Gandhimathi R (2014) Comparative removal of rhodamine B from aqueous solution by electro-Fenton and electro-Fenton-like processes. CLEAN Soil Air Water 42:779–784. doi:10.1002/clen.201300093

  30. Nidheesh PV, Gandhimathi R, Ramesh ST (2013) Degradation of dyes from aqueous solution by Fenton processes: a review Environmental Science and Pollution Research International 20:2099-2132 doi:10.1007/s11356-012-1385-z

  31. Nidheesh PV, Gandhimathi R, Sanjini NS (2014) NaHCO3 enhanced rhodamine B removal from aqueous solution by graphite–graphite electro Fenton system separation and purification. Technology 132:568–576. doi:10.1016/j.seppur.2014.06.009

  32. Pajootan E, Arami M (2013) Structural and electrochemical characterization of carbon electrode modified by multi-walled carbon nanotubes and surfactant. Electrochim Acta 112:505–514. doi:10.1016/j.electacta.2013.09.012

  33. Pajootan E, Arami M, Rahimdokht M (2014a) Application of carbon nanotubes coated electrodes and immobilized TiO2 for dye degradation in a continuous photocatalytic-electro-fenton process. Ind Eng Chem Res 53:16261–16269. doi:10.1021/ie5024589

  34. Pajootan E, Arami M, Rahimdokht M (2014b) Discoloration of wastewater in a continuous electro-Fenton process using modified graphite electrode with multi-walled carbon nanotubes/surfactant. Sep Purif Technol 130:34–44. doi:10.1016/j.seppur.2014.04.025

  35. Rache ML, García AR, Zea HR, Silva AMT, Madeira LM, Ramírez JH (2014) Azo-dye Orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst—kinetics with a model based on the Fermi’s equation. Appl Catal B Environ 146:192–200. doi:10.1016/j.apcatb.2013.04.028

  36. Ruiz EJ, Arias C, Brillas E, Hernandez-Ramirez A, Peralta-Hernandez JM (2011a) Mineralization of Acid Yellow 36 azo dye by electro-Fenton and solar photoelectro-Fenton processes with a boron-doped diamond anode. Chemosphere 82:495–501. doi:10.1016/j.chemosphere.2010.11.013

  37. Ruiz EJ, Hernández-Ramírez A, Peralta-Hernández JM, Arias C, Brillas E (2011b) Application of solar photoelectro-Fenton technology to azo dyes mineralization: effect of current density, Fe2+ and dye concentrations. Chem Eng J 171:385–392. doi:10.1016/j.cej.2011.03.004

  38. Salari D, Niaei A, Khataee A, Zarei M (2009) Electrochemical treatment of dye solution containing C.I. Basic Yellow 2 by the peroxi-coagulation method and modeling of experimental results by artificial neural networks. J Electroanal Chem 629:117–125. doi:10.1016/j.jelechem.2009.02.002

  39. Scialdone O, Galia A, Gattuso C, Sabatino S, Schiavo B (2015) Effect of air pressure on the electro-generation of H2O2 and the abatement of organic pollutants in water by electro-Fenton process. Electrochim Acta 182:775–780. doi:10.1016/j.electacta.2015.09.109

  40. Shen J, Qin C, Hu Y, Li N, Ye M (2010) Facile synthesis of magnetic nanoparticle-coated single-walled carbon nanotubes and its functional modification in epoxy resin. Polym Compos 31:2035–2041. doi:10.1002/pc.21001

  41. Shi J, Ai Z, Zhang L (2014) Fe@Fe2O3 core-shell nanowires enhanced Fenton oxidation by accelerating the Fe(III)/Fe(II) cycles Water research 59:145-153 doi:10.1016/j.watres.2014.04.015

  42. Thiam A, Sires I, Brillas E (2015) Treatment of a mixture of food color additives (E122, E124 and E129) in different water matrices by UVA and solar photoelectro-Fenton. Water Res 81:178–187. doi:10.1016/j.watres.2015.05.057

  43. Tian J, Olajuyin AM, Mu T, Yang M, Xing J (2016) Efficient degradation of rhodamine B using modified graphite felt gas diffusion electrode by electro-Fenton process Environmental Science and Pollution Research doi:10.1007/s11356-016-6360-7

  44. Wang L, Cao M, Ai Z, Zhang L (2015a) Design of a highly efficient and wide pH electro-Fenton oxidation system with molecular oxygen activated by ferrous-tetrapolyphosphate complex. Environ Sci Technol 49:3032–3039. doi:10.1021/es505984y

  45. Wang X, Pan Y, Zhu Z, Wu J (2014) Efficient degradation of rhodamine B using Fe-based metallic glass catalyst by Fenton-like process. Chemosphere 117:638–643. doi:10.1016/j.chemosphere.2014.09.055

  46. Wang Y, Priambodo R, Zhang H, Huang Y-H (2015b) Degradation of the azo dye Orange G in a fluidized bed reactor using iron oxide as a heterogeneous photo-Fenton catalyst RSC. Adv Physiol Educ 5:45276–45283. doi:10.1039/c5ra04238k

  47. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies Nanoscale research letters. Nanoscale Res Lett 3:397–415. doi:10.1007/s11671-008-9174-9

  48. Xia G, Lu Y, Xu H (2015) An energy-saving production of hydrogen peroxide via oxygen reduction for electro-Fenton using electrochemically modified polyacrylonitrile-based carbon fiber brush cathode. Sep Purif Technol 156:553–560. doi:10.1016/j.seppur.2015.10.048

  49. Yu F, Zhou M, Yu X (2015a) Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration Electrochimica Acta 163:182-189 doi:10.1016/j.electacta.2015.02.166

  50. Yu X, Zhou M, Ren G, Ma L (2015a) A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton. Chem Eng J 263:92–100. doi:10.1016/j.cej.2014.11.053

  51. Zarei M, Salari D, Niaei A, Khataee A (2009) Peroxi-coagulation degradation of C.I. Basic Yellow 2 based on carbon-PTFE and carbon nanotube-PTFE electrodes as cathode. Electrochimica Acta 54:6651–6660. doi:10.1016/j.electacta.2009.06.060

  52. Zeng X, Lemley AT (2009) Fenton degradation of 4,6-dinitro-o-cresol with Fe(2+)-substituted ion-exchange resin. J Agri Food Chem 57:3689–3694. doi:10.1021/jf900764q

  53. Zhang C, Zhou M, Ren G, Yu X, Ma L, Yang J, Yu F (2015a) Heterogeneous electro-Fenton using modified iron-carbon as catalyst for 2,4-dichlorophenol degradation: influence factors, mechanism and degradation pathway. Water Res 70:414–424. doi:10.1016/j.watres.2014.12.022

  54. Zhang C, Zhou M, Yu X, Ma L, Yu F (2015b) Modified iron-carbon as heterogeneous electro-Fenton catalyst for organic pollutant degradation in near neutral pH condition: characterization, degradation activity and stability. Electrochimica Acta 160:254–262. doi:10.1016/j.electacta.2015.01.092

  55. Zhang G, Yang F, Gao M, Fang X, Liu L (2008a) Electro-Fenton degradation of azo dye using polypyrrole/anthraquinonedisulphonate composite film modified graphite cathode in acidic aqueous solutions. Electrochimica Acta 53:5155–5161. doi:10.1016/j.electacta.2008.01.008

  56. Zhang J et al (2008b) Decomposing phenol by the hidden talent of ferromagnetic nanoparticles. Chemosphere 73:1524–1528. doi:10.1016/j.chemosphere.2008.05.050

  57. Zhang S, Zhao X, Niu H, Shi Y, Cai Y, Jiang G (2009) Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. J Hazard Mater 167:560–566. doi:10.1016/j.jhazmat.2009.01.024

  58. Zheng C et al (2015) Hydrophilic modification of ordered mesoporous carbon supported Fe nanoparticles with enhanced adsorption and heterogeneous Fenton-like oxidation performance. RSC Advances 5:98842–98852. doi:10.1039/c5ra15156b

  59. Zhou L, Hu Z, Zhang C, Bi Z, Jin T, Zhou M (2013) Electrogeneration of hydrogen peroxide for electro-Fenton system by oxygen reduction using chemically modified graphite felt cathode. Sep Purif Technol 111:131–136. doi:10.1016/j.seppur.2013.03.038

  60. Zhou L, Zhou M, Hu Z, Bi Z, Serrano KG (2014) Chemically modified graphite felt as an efficient cathode in electro-Fenton for p-nitrophenol degradation. Electrochim Acta 140:376–383. doi:10.1016/j.electacta.2014.04.090

Download references


This study was financially supported by the Science and Technology Service Network Program of Chinese Academy of Sciences (STS project, Grant No. KFJ-EW-STS-049).

Author information

Correspondence to Jianmin Xing.

Additional information

Responsible editor: Vítor Pais Vilar

Electronic supplementary material

Below is the link to the electronic supplementary material.


(DOCX 53 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Zhao, J., Olajuyin, A.M. et al. Effective degradation of rhodamine B by electro-Fenton process, using ferromagnetic nanoparticles loaded on modified graphite felt electrode as reusable catalyst: in neutral pH condition and without external aeration. Environ Sci Pollut Res 23, 15471–15482 (2016). https://doi.org/10.1007/s11356-016-6721-2

Download citation


  • Catalyst
  • Electro-Fenton process
  • Ferromagnetic nanoparticles
  • Graphite felt electrode
  • Rhodamine B