Environmental Science and Pollution Research

, Volume 23, Issue 15, pp 15111–15121 | Cite as

Exploring the correlations between antibiotics and antibiotic resistance genes in the wastewater treatment plants of hospitals in Xinjiang, China

  • Chao Li
  • Jianjiang LuEmail author
  • Jiang Liu
  • Genlin Zhang
  • Yanbing Tong
  • Na Ma
Research Article


Various antibiotics have been extensively used to treating infectious diseases in hospitals. In this study, the abundance and diversity of antibiotics and antibiotic resistance genes (ARGs) were observed in the wastewater samples from five hospitals in Xinjiang, China. The total concentrations of tetracyclines, sulphonamides, and quinolones in hospital influents ranged from 363.4 to 753.3 ng/L, 285.5 to 634.9 ng/L, and 1355.8 to 1922.4 ng/L, respectively. However, the removal efficiency of tetracyclines, sulphonamides, and quinolones in wastewater treatment processes ranged from 72.4 to 79.3 %, 36.0 to 52.2 %, and 45.1 to 55.4 %, respectively. The contamination levels of the selected ARGs varied in all wastewater samples. The highest relative concentrations of sul1, sul2, tetQ, and qnrS were significantly higher than those of other ARGs in this study. Significant positive correlations between the relative abundance of partial ARGs and concentrations of certain antibiotics were observed in hospital wastewaters. Results show that integrons played an important role in disseminating and distributing ARGs in microorganism systems. Furthermore, strong correlations were observed between tetQ, sulphonamide resistance genes (except sulA) and intI1. This study aimed to determine the contamination levels of antibiotics and ARGs and analyze the relationships among ARGs, and antibiotics and integron genes in hospital wastewaters.


Antibiotics Antibiotic-resistant gene Hospital Wastewater treatment 



The authors are grateful to the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University. This research was supported by the National Science Foundation of China (No. 21267019).


  1. Adelowo OO, Fagade OE (2009) The tetracycline resistance gene tet39 is present in both Gram-negative and Gram-positive bacteria from a polluted river, Southwestern Nigeria. Lett Appl Microbiol 48:167–172. doi: 10.1111/j.1472-765X.2008.02523.x CrossRefGoogle Scholar
  2. Akinbowale OL, Peng H, Barton MD (2007) Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia. J Appl Microbiol 103:2016–2025. doi: 10.1111/j.1365-2672.2007.03445.x CrossRefGoogle Scholar
  3. Aktan Y, Tan S, Icgen B (2013) Characterization of lead-resistant river isolate Enterococcus faecalis and assessment of its multiple metal and antibiotic resistance. Environ Monit Assess 185(6):5285–5293. doi: 10.1007/s10661-012-2945-x CrossRefGoogle Scholar
  4. Aminov RI, Garrigues JN, Mackie RI (2001) Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl Environ Microbiol 67:22–32. doi: 10.1128/AEM.67.1.22-32.2001 CrossRefGoogle Scholar
  5. Belinda H, Elisabet M, Meritxell G, Pilar L, Marcelo P, Joan A, Damià B, Jose LB, Sara RM, Rafael M (2013) Exploring the links between antibiotic occurrence, antibiotic resistance, and bacterial communities in water supply reservoirs. Sci Total Environ 456–457:161–170. doi: 10.1016/j.scitotenv.2013.03.071 Google Scholar
  6. Berglund B, Fick J, Lindgren PE (2015) Urban wastewater effluent increases antibiotic resistance gene concentrations in a receiving northern European river. Environ Toxicol Chem 32:192–196. doi: 10.1002/etc.2784 CrossRefGoogle Scholar
  7. Brown MG, Balkwill DL (2009) Antibiotic resistance in bacteria isolated from the deep terrestrial subsurface. Microb Ecol 57(3):484–93. doi: 10.1007/s00248-008-9431-6 CrossRefGoogle Scholar
  8. Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P (2007) Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother 60:394–397. doi: 10.1093/jac/dkm204 CrossRefGoogle Scholar
  9. Chen B, Liang X, Nie X, Huang X, Zou S, Li X (2015) The role of class I integrons in the dissemination of sulfonamide resistance genes in the Pearl River and Pearl River Estuary, South China. J Hazard Mater 282:61–67. doi: 10.1016/j.jhazmat.2014.06.010 CrossRefGoogle Scholar
  10. Cheng W, Chen H, Su C, Yan S (2013) Abundance and persistence of antibiotic resistance genes in livestock farms: a comprehensive investigation in eastern China. Environ Int 61C:1–7. doi: 10.1016/j.envint.2013.08.023 CrossRefGoogle Scholar
  11. Dahmen S, Poirel L, Mansour W, Bouallègue O, Nordmann P (2010) Prevalence of plasmid-mediated quinolone resistance determinants in Enterobacteriaceae from Tunisia. Clin Microbiol Infect 16:1019–1023. doi: 10.1111/j.1469-0691.2009.03010.x CrossRefGoogle Scholar
  12. De Souza MJ, Nair S, Loka Bharathi PA, Chan DD (2006) Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic Marine waters. Ecotoxicology 15(4):379–384CrossRefGoogle Scholar
  13. Dorival-García N, Zafra-Gómez A, Navalón A, González J, Vílchez JL (2013) Removal of quinolone antibiotics from wastewaters by sorption and biological degradation in laboratory-scale membrane bioreactors. Sci Total Environ 442:317–328. doi: 10.1016/j.scitotenv.2012.10.026 CrossRefGoogle Scholar
  14. Gao P, Mao D, Luo Y, Wang L, Xu B, Xu L (2012) Occurrence of sulfonamide and tetracycline resistant bacteria and resistance genes in aquaculture environment. Water Res 46:2355–2364. doi: 10.1016/j.watres.2012.02.004 CrossRefGoogle Scholar
  15. Goldstein C, Lee MD, Sanchez S, Hudson C, Phillips B, Register B, Grady M, Liebert C, Summers AO, White DG, Maurer JJ (2001) Incidence of class 1 and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics. Antimicrob Agents Chemother 45:723–726. doi: 10.1128/AAC.45.3.723-726.2001 CrossRefGoogle Scholar
  16. Guillard T, Moret H, Brasme L, Carlier A, Vernet-Garnier V, Cambau E, de Champs C (2011) Rapid detection of qnr and qepA plasmid-mediated quinolone resistance genes using real-time PCR. Diagn Microbiol Infect Dis 70:253–259. doi: 10.1016/j.diagmicrobio.2011.01.004 CrossRefGoogle Scholar
  17. Hassan SA, Altalhi AD, Gherbawy YA, EI-Deeb BA (2011) Bacterial load of fresh vegetables and their resistance to the currently used antibiotics in Saudi Arabia. Foodborne Pathog Dis 8(9):1011–1018. doi: 10.1089/fpd.2010.0805 CrossRefGoogle Scholar
  18. Huang MH, Zhang W, Liu C, Hu HY (2015) Fate of trace tetracycline with resistant bacteria and resistance genes in an improved AAO wastewater treatment plant. Process Saf Environ Prot 93:68–74. doi: 10.1016/j.psep.2014.04.004 CrossRefGoogle Scholar
  19. Jiang H, Zhang D, Xiao S, Geng C, Zhang X (2013a) Occurrence and sources of antibiotics and their metabolites in river water, WWTPs, and swine wastewater in Jiulongjiang River basin, south China. Environ Sci Pollut Res 20:9075–9083. doi: 10.1007/s11356-013-1924-2 CrossRefGoogle Scholar
  20. Jiang L, Hu X, Xu T, Zhang H, Sheng D, Yin D (2013b) Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China. Sci Total Environ 458–460:267–272. doi: 10.1016/j.scitotenv.2013.04.038 CrossRefGoogle Scholar
  21. Karthikeyan KG, Meyer MT (2006) Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci Total Environ 361:196–207. doi: 10.1016/j.scitotenv.2005.06.030 CrossRefGoogle Scholar
  22. Kim SR, Nonaka L, Suzuki S (2004) Occurrence of tetracycline resistance genes tet(M) and tet(S) in bacteria from marine aquaculture sites. FEMS Microbiol Lett 237(1):147–156. doi: 10.1016/j.femsle.2004.06.026 CrossRefGoogle Scholar
  23. Li J, Wang T, Shao B, Shen J, Wang S, Wu Y (2012) Plasmid-mediated quinolone resistance genes and antibiotic residues in wastewater and soil adjacent to swine feedlots: potential transfer to agricultural lands. Environ Health Perspect 120:1144–1149. doi: 10.1289/ehp.1104776 CrossRefGoogle Scholar
  24. Li W, Shi Y, Gao L, Liu J, Cai Y (2013) Occurrence and removal of antibiotics in a municipal wastewater reclamation plant in Beijing, China. Chemosphere 92:435–444. doi: 10.1016/j.chemosphere.2013.01.040 CrossRefGoogle Scholar
  25. Liu M, Zhang Y, Yang M, Tian Z, Ren L, Zhang S (2012) Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system. Environ Sci Technol 46(14):7551–7557. doi: 10.1021/es301145m CrossRefGoogle Scholar
  26. Liu L, Liu YH, Wang Z, Liu CX, Huang X, Zhu GF (2014) Behavior of tetracycline and sulfamethazine with corresponding resistance genes from swine wastewater in pilot-scale constructed wetlands. J Hazard Mater 278:304–310. doi: 10.1016/j.jhazmat.2014.06.015 CrossRefGoogle Scholar
  27. Luo Y, Mao D, Rysz M, Zhou Q, Zhang H, Xu L, J J Alvarez P (2010) Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environ Sci Technol 44:7720–7225. doi: 10.1021/es100233w Google Scholar
  28. Luo Y, Xu L, Rysz M, Wang Y, Zhang H, Alvarez PJ (2011) Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environ Sci Technol 45:1827–1833. doi: 10.1021/es104009s CrossRefGoogle Scholar
  29. MacDougall C, Powell JP, Johnson CK, Edmond MB, Polk RE (2005) Hospital and community fluoroquinolone use and resistance in Staphylococcus aureus and Escherichia coli in 17 US hospitals. Clin Infect Dis 41:435–440. doi: 10.1086/432056 CrossRefGoogle Scholar
  30. Mazel D (2006) Integrons: agents of bacterial evolution. Nat Rev Microbiol 4:608–620. doi: 10.1038/nrmicro1462 CrossRefGoogle Scholar
  31. McKinney CW, Loftin KA, Meyer MT, Davis JG, Pruden A (2010) tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence. Environ Sci Technol 44:6102–6109. doi: 10.1021/es9038165 CrossRefGoogle Scholar
  32. Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70(1):202–213CrossRefGoogle Scholar
  33. Nõlvak H, Truu M, Tiirik K, Oopkaup K, Sildvee T, Kaasik A, Mander Ü, Truu J (2013) Dynamics of antibiotic resistance genes and their relationships with system treatment efficiency in a horizontal subsurface flow constructed wetland. Sci Total Environ 461-462C:636–644. doi: 10.1016/j.scitotenv.2013.05.052 CrossRefGoogle Scholar
  34. Pei R, Kim SC, Carlson KH, Pruden A (2006) Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res 40:2427–2435. doi: 10.1016/j.watres.2006.04.017 CrossRefGoogle Scholar
  35. Resende JA, Silva VL, de Oliveira TL, de Oliveira FS, da Costa CJ, Otenio MH, Diniz CG (2014) Prevalence and persistence of potentially pathogenic and antibiotic resistant bacteria during anaerobic digestion treatment of cattle manure. Bioresour Technol 153:284–91. doi: 10.1016/j.biortech.2013.12.007 CrossRefGoogle Scholar
  36. Robicsek A, Jacoby GA, Hooper DC (2006) The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 6:629–640. doi: 10.1016/S1473-3099(06)70599-0 CrossRefGoogle Scholar
  37. Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, Sànchez-Melsió A, Borrego CM, Barceló D, Balcázar JL (2015) Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res 69:234–242. doi: 10.1016/j.watres.2014.11.021 CrossRefGoogle Scholar
  38. Ruimy R, Brisabois A, Bernede C, Skurnk D, Barnat S, Arlet G, Momcilovic S, Elbaz S, Moury F, Vibet MA, Courvalin P, Guillemot D, Andremont A (2010) Organic and conventional fruits and vegetables contain equivalent counts of Gram-negative bacteria expressing resistance to antibacterial agents. Environ Microbiol 12(3):608–615. doi: 10.1111/j.1462-2920.2009.02100.x CrossRefGoogle Scholar
  39. Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759. doi: 10.1016/j.chemosphere.2006.03.026 CrossRefGoogle Scholar
  40. Sayah RS, Kaneene JB, Johnson Y, Miller R (2005) Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic-and wild-animal fecal samples, human septage, and surface water. Appl Environ Microbiol 71:1394–1404. doi: 10.1128/AEM.71.3.1394-1404.2005 CrossRefGoogle Scholar
  41. Su HC, Ying GG, Tao R, Zhang RQ, Zhao JL, Liu YS (2012) Class 1 and 2 integrons, sul resistance genes and antibiotic resistance in Escherichia coli isolated from Dongjiang River, South China. Environ Pollut 169:42–49. doi: 10.1016/j.envpol.2012.05.007 CrossRefGoogle Scholar
  42. Tahrani L, Soufi L, Mehri I, Najjari A, Hassan A, Van Loco J, Reyns T, Cherif A, Mansour HB (2015) Isolation and characterization of antibiotic-resistant bacteria from pharmaceutical industrial wastewaters. Microb Pathog 89:54–61. doi: 10.1016/j.micpath.2015.09.001 CrossRefGoogle Scholar
  43. Tao CW, Hsu BM, Ji WT, Hsu TK, Kao PM, Hsu CP, Shen SM, Shen TY, Wan TJ, Huang YL (2014) Evaluation of five antibiotic resistance genes in wastewater treatment systems of swine farms by real-time PCR. Sci Total Environ 496:116–121. doi: 10.1016/j.scitotenv.2014.07.024 CrossRefGoogle Scholar
  44. Udikovic-KoLic N, Wichmann F, Broderick NA, Handelsman J (2014) Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc Natl Acad Sci U S A 111(42):15202–7. doi: 10.1073/pnas.1409836111 CrossRefGoogle Scholar
  45. Wu C, Spongberg AL, Witter JD (2009) Sorption and biodegradation of selected antibiotics in biosolids. J Environ Sci Health 44:454–461. doi: 10.1080/10934520902719779 CrossRefGoogle Scholar
  46. Xu J, Xu Y, Wang H, Guo C, Qiu H, He Y, Zhang Y, Li X, Meng W (2015) Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere 119:1379–1385. doi: 10.1016/j.chemosphere.2014.02.040 CrossRefGoogle Scholar
  47. Yang SF, Lin CF, Wu CJ, Ng KK, Lin AY, Hong PK (2012) Fate of sulfonamide antibiotics in contact with activated sludge—sorption and biodegradation. Water Res 46:1301–1308. doi: 10.1016/j.watres.2011.12.035 CrossRefGoogle Scholar
  48. Zhang XX, Zhang T (2011) Occurrence, abundance, and diversity of tetracycline resistance genes in 15 sewage treatment plants across China and other global locations. Environ Sci Technol 45(7):2598–2604. doi: 10.1021/es103672x CrossRefGoogle Scholar
  49. Zhang XX, Zhang T, Zhang M, Fang HH, Cheng SP (2009) Characterization and quantification of class 1 integrons and associated gene cassettes in sewage treatment plants. Appl Microbiol Biotechnol 182:1169–1177. doi: 10.1007/s00253-009-1886-y CrossRefGoogle Scholar
  50. Zhou T, Lu J, Tong Y, Li S, Wang X (2014) Distribution of antibiotic resistance genes in Bosten Lake, Xinjiang, China. Water Sci Technol 70(5):925–931. doi: 10.2166/wst.2014.321 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Chao Li
    • 1
  • Jianjiang Lu
    • 1
    Email author
  • Jiang Liu
    • 1
  • Genlin Zhang
    • 1
  • Yanbing Tong
    • 1
  • Na Ma
    • 1
  1. 1.Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical EngineeringShihezi UniversityShiheziChina

Personalised recommendations