Environmental Science and Pollution Research

, Volume 23, Issue 15, pp 14918–14926 | Cite as

Toxicity assessment of four insecticides with different modes of action on pupae and adults of Eriopis connexa (Coleoptera: Coccinellidae), a relevant predator of the Neotropical Region

  • Marilina Noelia Fogel
  • Marcela Inés SchneiderEmail author
  • Federico Rimoldi
  • Lorena Sabrina Ladux
  • Nicolas Desneux
  • Alicia Estela Ronco
Research Article


Pesticides can be toxic to nontarget organisms including the natural enemies of agricultural pests, thus reducing the biodiversity of agroecosystems. The lethal and sublethal effects of four insecticides with different modes of action—pyriproxyfen, teflubenzuron, acetamiprid, and cypermethrin—were evaluated on pupae and adults of Eriopis connexa, an effective predator in horticultural crops. Pupal survival was reduced by pyriproxyfen (26 %) and cypermethrin (41 %). Malformations in adults emerged from treated pupae were observed after acetamiprid (82.7 and 100 % for 100 and 200 mg a.i./l, respectively), pyriproxyfen (48.6 %), and cypermethrin (13.3 %) treatments. A longer mean oviposition time was also observed in adults emerged from pupae treated with cypermethrin. Moreover, the latter insecticide as well as teflubenzuron did not reduce reproductive parameters, whereas females emerged from pyriproxyfen-treated pupae were not be able to lay eggs even when females showed large abdomens. Upon exposure of adults, survival was reduced to approximately 90 % by acetamiprid, but no reduction occurred with pyriproxyfen, teflubenzuron, or cypermethrin though the fecundity at fifth oviposition time of the female survivors was reduced. Pyriproxyfen decreased the hatching at all the oviposition times tested, whereas fertility was reduced in the fourth and fifth ovipositions by teflubenzuron and in the first and third ovipositions by cypermethrin. In conclusion, all four insecticides tested exhibited lethal or sublethal effects, or both, on E. connexa. The neurotoxic insecticides were more harmful than the insect-growth regulators, and pupae were more susceptible than adults. The toxicity of insecticides on the conservation of predators in agroecosystems of the Neotropical Region is discussed.


Eriopis connexa Insecticides selectivity Lethal effects Sublethal effects 



This research was funded by a PICT 2010-0891- and PICT 2011-1752-BID projects from the Argentine National Agency for the Promotion of Science and Technology (ANPCyT-FONCyT) granted to Alicia Ronco and Marcela I. Schneider, respectively. The authors wish to thank the National Council of Scientific and Technical Research (CONICET) for its support, Engineer Armando Junquera (Asociación Cooperativas Argentinas) for the ACA 901 wheat seeds, and Dr. Mónica Ricci (School of Agronomic and Forest Sciences, National University of la Plata, UNLP) for the R. padi clones to initiate our aphid colonies. We are also grateful to Summit-Agro S.A. Argentina, BASF, Argentina, and Gleba, Argentina, for providing samples of insecticides. Dr. Donald F. Haggerty, a retired academic career investigator and native English speaker, edited the final version of the manuscript. We are very grateful to the two anonymous reviewers and Editor, whose contributions have helped to improve the manuscript.


  1. Agostini MG, Natale GS, Ronco AE (2010) Lethal and sublethal effects of cypermethrin to Hypsiboas pulchellus tadpoles. Ecotoxicology 19:1545–1550CrossRefGoogle Scholar
  2. Almeida-Sarmento R, Pallini A, Venzon M, Fonseca de Souza OF, Molina-Rugama AJ, Lima de Oliveira CL (2007) Functional response of the predator Eriopis connexa (Coleoptera: Coccinellidae) to different prey types. Braz Arch Biol Technol 50:121–126CrossRefGoogle Scholar
  3. Bacci L, Crespo ALB, Galvan TL, Pereira EJG, Picanco MC, Silva GA, Chediak M (2007) Toxicity of insecticides to the sweetpotato whitefly (Hemiptera: Aleyrodidae) and its natural enemies. Pest Manag Sci 63:699–706CrossRefGoogle Scholar
  4. Benamú MA, Schneider MI, Gonzalez A, Sánchez NE (2013) Short and long-term effects of three neurotoxic insecticides on the orb-web spider Alpaida veniliae (Araneae, Araneidae): implications for IPM programs. Ecotoxicology 22:1155–1164CrossRefGoogle Scholar
  5. Biddinger DJ, Weber DC, Hull LA (2009) Coccinellidae as predators of mites: Stethorini in biological control. Biol Control 51:268–283CrossRefGoogle Scholar
  6. Biondi A, Desneux N, Siscaro G, Zappalà L (2012) Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87:803–812CrossRefGoogle Scholar
  7. Blacquiêre T, Smagghe G, Cornelis van Gestel CAM, Mommaerts M (2012) Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21:973–992CrossRefGoogle Scholar
  8. Cámara Argentina de Sanidad Agropecuaria y Fertilizantes: Guía de productos fitosanitarios (2013/2015) CASAFE, Buenos Aires, ArgentinaGoogle Scholar
  9. Cappello VY, Fortunato N (2008) Dirección Provincial de Recursos Naturales, Programa de Gestión Ambiental en Agroecosistemas. Plaguicidas en la Provincia de Buenos Aires: informacioón toxicológica, ecotoxicológica y aspectos ambientales. Organismo Provincial para el Desarrollo Sustentable, pp 1–146Google Scholar
  10. Chagnon M, Kreutzweiser D, Mitchell EAD, Morrissey CA, Noome DA, van der Sluijs JP (2015) Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res 22:119–134CrossRefGoogle Scholar
  11. Chen TY, Liu TX (2002) Susceptibility of immature stages of Chrysoperla rufilabris (Neurop., Chrysopidae) to pyriproxyfen, a juvenile hormone analog. J Appl Entomol 126:125–129CrossRefGoogle Scholar
  12. Cock MJW, van Lenteren JC, Brodeur J, Barratt BIP, Bigler F, Bolckmans K, Cônsoli FL, Haas F, Mason PG, Parra JRP (2010) Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control? BioControl 55(19):9–218Google Scholar
  13. Darvas B, Polgar LA (1998) Novel type insecticides: specificity and effects on non-target organisms. In: Ishaaya I, Degheele D (eds) Insecticides with novel modes of action. Springer, Berlin, pp 188–259CrossRefGoogle Scholar
  14. Desneux N, Pham-Delegue MH, Kaiser L (2004a) Effects of sublethal and lethal doses of lambda-cyhalothrin on oviposition experience and host searching behaviour of a parasitic wasp, Aphidius ervi. Pest Manag Sci 60:381–389CrossRefGoogle Scholar
  15. Desneux N, Rafalimanana H, Kaiser L (2004b) Dose–response relationship in lethal and behavioural effects of different insecticides on the parasitic wasp Aphidius ervi. Chemosphere 54:619–627CrossRefGoogle Scholar
  16. Desneux N, Fauvergue X, Dechaume-Moncharmont FX, Kerhoas L, Ballanger Y, Kaiser L (2005) Diaeretiella rapae limits Myzus persicae populations following applications of deltamethrin in oilseed rape. J Econ Entomol 98:9–17CrossRefGoogle Scholar
  17. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106CrossRefGoogle Scholar
  18. Duarte Gómez W, Zenner de Polanía I (2009) Tabla de vida del cucarrón depredador Eriopis connexa (Germar). Revista U.D.C.A. Actualidad Divulgación Científica 12:147–155Google Scholar
  19. Environmental Protection Agency (EPA) (2013) Accessed 27 July 2013
  20. Fogel MN (2012) Selectividad de insecticidas utilizados en cultivos hortícolas del Cinturón Hortícola Platense sobre el depredador Eriopis connexa en el marco del Manejo Integrado de Plagas. Tesis Doctoral, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 146 ppGoogle Scholar
  21. Fogel MN, Schneider MI, Desneux N, Gonzalez B, Ronco AE (2013) Impact of the neonicotinoid acetamiprid on immature stages of the predator Eriopis connexa (Coleoptera: Coccinellidae). Ecotoxicology 22:1063–1071CrossRefGoogle Scholar
  22. Garzon A, Medina P, Amor F, Vinuela E, Budia F (2015) Toxicity and sublethal effects of six insecticides to last instar larvae and adults of the biocontrol agents Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) and Adalia bipunctata (L.) (Coleoptera: Coccinellidae). Chemosphere 132:87–93CrossRefGoogle Scholar
  23. Ghanim M, Ishaaya I (2010) Insecticides with novel modes of action: mechanism and resistance management. In: Ishaaya I, Degheele D (eds) Insecticides with novel modes of action: mechanism and application. Springer, Berlin, pp 385–407Google Scholar
  24. Gibbs KE, Mackey RL, Currie DJ (2009) Human land use, agriculture, pesticides and losses of imperiled species. Divers Distrib 15:242–253CrossRefGoogle Scholar
  25. Grafton-Cardwell EE, Gu P (2003) Conserving vedalia beetle, Rodolia cardinalis (Mulsant) (Coleoptera: Coccinellidae) in citrus: a continuing challenge as new insecticides gain registration. J Econ Entomol 96:1388–1398CrossRefGoogle Scholar
  26. He YX, Zhao J, Zheng Y, Zhan Z, Desneux N, Wu KM (2012) Lethal effect of imidacloprid on the coccinellid predator Serangium japonicum and sublethal effects on predator voracity and on functional response to the whitefly Bemisia tabaci. Ecotoxicology 21:1291–1300CrossRefGoogle Scholar
  27. Ishaaya A, De Cock A, Degheele D (1994) Pyriproxyfen, a potent suppressor of egg hatch and adult formation of the greenhouse whitefly (Homoptera: Aleyrodidae). J Econ Entomol 87:1185–1189CrossRefGoogle Scholar
  28. Ishaaya I, Kontsedalov S, Masirov D, Horowitz AR (2001) Biorational agents – mechanism, selectivity and importance in IPM programs for controlling agricultural pests. Med Landbouww Rijksuniv Gent 66:363–374Google Scholar
  29. Ishaaya I, Barazani A, Kontsedalov S, Horowitz AR (2007) Insecticides with novel modes of action: mechanism, selectivity and cross-resistance. Entomol Res 37:148–152CrossRefGoogle Scholar
  30. Jacas J, Urbaneja A (2009) Origen de las plagas e historia del Control Biológico. In: Jacas J, Urbaneja A (eds) Control Biológico de Plagas Agrícolas. Phytoma, España, pp 3–13Google Scholar
  31. James DG (2004) Effect of buprofezin on survival of immature stages of Harmonia axyridis, Stethorus punctum picipes (Coleoptera: Coccinellidae), Orius tristicolor (Hemiptera: Anthocoridae), and Geocoris spp. (Hemiptera: Geocoridae). J Econ Entomol 97:900–904CrossRefGoogle Scholar
  32. Kim DS, Brooks DJ, Riedl H (2006) Lethal and sublethal effects of abamectin, spinosad, methoxyfenozide and acetamiprid on the predaceous plant bug Deraeocoris brevis in the laboratory. Biocontrol 51:65–484CrossRefGoogle Scholar
  33. Liu T-X, Stansly PA (2004) Lethal and sublethal effects of two insect growth regulators on adult Delphastus catalinae (Coleoptera: Coccinellidae), a predator of whiteflies (Homoptera: Aleyrodidae). Biol Control 30:298–305CrossRefGoogle Scholar
  34. Lorca Gonzalez RM (2005) Toxicidad de insecticidas sobre Eriopis connexa (Germar) (Coleoptera: Coccinellidae). Universidad de Chile, Facultad de Ciencias Agronómicas, Escuela de Agronomía. Memoria de título, Santiago, ChileGoogle Scholar
  35. Malagnoux L, Capowiez Y, Rault M (2015) Impact of insecticide exposure on the predation activity of the european earwig Forficula auricularia. Environ Sci Pollut Res 22:14116–14126CrossRefGoogle Scholar
  36. Martos A, Niemeyer HM (1990) Dos estudios sobre crianza masal del coccinélido Eriopis connexa Germar. Rev Per Entomol 32:50–52Google Scholar
  37. Medina P, Budia F, Del Estal P, Adan A, Viñuela E (2003) Side effects of six insecticides on different developmental stages of Chrysoperla carnea (Neuroptera: Chrysopidae). IOBC/ wprs Pestic Benefic Org Bull 25:33–40Google Scholar
  38. Mendel Z, Blumberg D, Ishaaya I (1994) Effects of some insect growth regulators on natural enemies of scale insects (Hom.: Coccoidea). Entomophaga 39:199–209CrossRefGoogle Scholar
  39. Mestdagh I, De Clercq P, Degheele D (1996) Suceptibility of the predatory bug Podisus maculiventris Say (Heteroptera: Pentatomide) to pyriproxyfen residues on sweet pepper plants. Parasitica 52:153–161Google Scholar
  40. Michaud JP (2012) Coccinellids in biological control. In: Hodek HF, Honĕk A (eds) Ecology and behaviour of the Ladybird Beetles (Coccinellidae). Wiley-Blackwell Publishing Ltd., UK, pp 488–490CrossRefGoogle Scholar
  41. Mohaghegh J, De Clercq P, Tirry L (2000) Toxicity of selected insecticides to the spined soldier bug, Podisus maculiventris (Heteroptera: Pentatomidae). Biocontrol Sci Tech 10:33–40CrossRefGoogle Scholar
  42. Moscardini VF, Da Costa Gontijo P, Carvalho GA, Lopes de Oliveira R, Jader Braga M, Silva FF (2013) Toxicity and sublethal effects of seven insecticides to eggs of the flower bug Orius insidiosus (Say) (Hemiptera: Anthocoridae). Chemosphere 92:490–496CrossRefGoogle Scholar
  43. Moser SE, Obrycki JJ (2009) Non-target effects of neonicotinoid seed treatments; mortality of coccinellid larvae related to zoophytophagy. Biol Control 51:487–492CrossRefGoogle Scholar
  44. Obrycki JJ, Harwood JD, Kring TJ, O’Neil RJ (2009) Aphidophagy by Coccinellidae: application of biological control in agroecosystems. Biol Control 51:244–254CrossRefGoogle Scholar
  45. Papachristos D, Milonas P (2008) Adverse effects of soil applied insecticides on the predatory coccinellid Hippodamia undecimnotata (Coleoptera: Coccinellidae). Biol Control 47:77–81CrossRefGoogle Scholar
  46. Planes L, Catalán J, Tena A, Porcuna JL, Jacas JA, Izquierdo J, Urbaneja A (2013) Lethal and sublethal effects of spirotetramat on the mealybug destroyer, Cryptolaemus montrouzieri. J Pest Sci 86:321–327CrossRefGoogle Scholar
  47. Rill SM, Grafton-Cardwell EE, Morse JG (2008) Effects of two insect growth regulators and a neonicotinoid on various life stages of Aphytis melinus (Hymenoptera: Aphelinidae). Biocontrol 53:579–587CrossRefGoogle Scholar
  48. Rimoldi F, Schneider MI, Ronco AE (2008) Susceptibility of Chrysoperla externa (Neuroptera: Chrysopidae) to conventional and biorational insecticides. Environ Entomol 37:1252–1257CrossRefGoogle Scholar
  49. Rimoldi F, Schneider MI, Ronco AE (2012) Short and Long-term effects of endosulfan, cypermethrin, spinosad, and methoxyfenozide on adults of Chrysoperla externa (Neuroptera: Chrysopidae). J Econ Entomol 105:1982–1987CrossRefGoogle Scholar
  50. Ronco AE, Carriquiriborde P, Natale GS, Martin ML, Mugni H, Bonetto C (2008) Integrated approach for the assessment of biotech soybean pesticides impact on low order stream ecosystems of the Pampasic Region. In: Chenand J, Guo C (eds) Ecosystem ecology research. Nova, Hauppauge, pp 209–239Google Scholar
  51. Sánchez-Bayo F (2011) Impacts of agricultural pesticides on terrestrial ecosystems. In: Sánchez-Bayo F, van den Brink PJ, Reinier RM (eds) Ecological impacts of toxic chemicals. Bentham Science Publishers Ltd, pp 63–87Google Scholar
  52. Schneider MI, Smagghe G, Gobbi A, Viñuela E (2003) Toxicity and pharmacokinetics of seven novel insecticides on pupae of Hyposoter didymator (Hymenoptera: Ichneumonidae), a parasitoid of early larval instars of lepidopteran pests. J Econ Entomol 96:1054–1065CrossRefGoogle Scholar
  53. Schneider MI, Smagghe G, Pineda S, Viñuela E (2004) Action of insect growth regulator insecticides and spinosad on life history parameters and absorption in third instar larvae of the endoparasitoid Hyposoter didymator. Biol Control 31:189–198CrossRefGoogle Scholar
  54. Schneider MI, Pineda S, Smagghe G (2006) Side effects of conventional and non-conventional insecticides on eggs and larvae of Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) in Argentine. Commun Appl Biol Sci 71:425–427Google Scholar
  55. Singh PB, Singh V (2008) Cypermethrin induced histological changes in gonadotrophic cells, liver, gonads, plasma levels of estradiol 17-_ and 11-ketotestosterone, and sperm motility in Heteropneustes fossilis (Bloch). Chemosphere 72:422–431CrossRefGoogle Scholar
  56. Stark JD, Vargas R, Banks JE (2007) Incorporating ecologically relevant measures of pesticide effect for estimating the compatibility of pesticides and biocontrol agents. J Econ Entomol 100:1027–1032CrossRefGoogle Scholar
  57. Stenersen J (2004) Chemical pesticides: mode of action and toxicology. CRC Publisher, New YorkCrossRefGoogle Scholar
  58. Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45:247–268CrossRefGoogle Scholar
  59. Viñuela E, Medina MP, Schneider MI, Gonzalez M, Budia F, Adán A, Del Estal P (2001) Comparison of side-effects of spinosad, tebufenozide and azadirachtin on predators Chrysoperla carnea and Podisus maculiventris and the parasitoids Opius concolor and Hyposoter didymator under laboratory conditions. IOBC WPRS Bull 24:25–34Google Scholar
  60. Ware G, Whitacre D (2004) The pesticide book, 6th edn. MeisterPro, USAGoogle Scholar
  61. Weber DC, Lundgren JG (2009) Assessing the trophic ecology of the Coccinellidae: their roles as predators and as prey. Biol Control 51:199–214CrossRefGoogle Scholar
  62. Wyckhuys KAG, Lu Y, Morales H, Vazquez LL, Legaspi JC, Eliopoulos PA, Hernandez LM (2013) Current status and potential of conservation biological control for agriculture in the developing world. Biol Control 65:152–167CrossRefGoogle Scholar
  63. Yao F-L, Zheng Y, Zhaoa J-W, Desneux N, Hea Y-X, Weng Q-Y (2015) Lethal and sublethal effects of thiamethoxam on the whitefly predator Serangium japonicum (Coleoptera: Coccinellidae) through different exposure routesGoogle Scholar
  64. Youn YN, Seo MJ, Shin JG, Jang C, Yub YM (2003) Toxicity of greenhouse pesticides to multicolored Asian lady beetles, Harmonia axyridis (Coleoptera: Coccinellidae). Biol Control 28:164–170CrossRefGoogle Scholar
  65. Yu C, Lin R, Fu M, Zhou Y, Zong F, Jiang H, Lv N, Piao X, Zhang J, Liu Y, Brock TCM (2014) Impact of imidacloprid on life-cycle development of Coccinella septempunctata in laboratory microcosms. Ecotoxicol Environ Saf 110:168–173CrossRefGoogle Scholar
  66. Zar JH (1996) Biostatistical analysis. Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marilina Noelia Fogel
    • 1
    • 2
  • Marcela Inés Schneider
    • 1
    • 3
    Email author
  • Federico Rimoldi
    • 2
  • Lorena Sabrina Ladux
    • 1
  • Nicolas Desneux
    • 4
  • Alicia Estela Ronco
    • 2
  1. 1.Laboratorio de Ecotoxicología: Plaguicidas y Control BiológicoCentro de Estudios Parasitológicos y de Vectores (CEPAVE-CONICET, Universidad Nacional de La Plata)La PlataArgentina
  2. 2.Centro de Investigaciones del Medio Ambiente (CIMA), Facultad de Ciencias Exactas, CONICETUniversidad Nacional de La PlataLa PlataArgentina
  3. 3.Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La PlataLa PlataArgentina
  4. 4.French National Institute for Agricultural Research (INRA), UMR-ISASophia-AntipolisFrance

Personalised recommendations