Environmental Science and Pollution Research

, Volume 23, Issue 14, pp 14393–14404 | Cite as

Multiple effects of a commercial Roundup® formulation on the soil filamentous fungus Aspergillus nidulans at low doses: evidence of an unexpected impact on energetic metabolism

  • Valérie Nicolas
  • Nathalie Oestreicher
  • Christian Vélot
Research Article

Abstract

Soil microorganisms are highly exposed to glyphosate-based herbicides (GBH), especially to Roundup® which is widely used worldwide. However, studies on the effects of GBH formulations on specific non-rhizosphere soil microbial species are scarce. We evaluated the toxicity of a commercial formulation of Roundup® (R450), containing 450 g/L of glyphosate (GLY), on the soil filamentous fungus Aspergillus nidulans, an experimental model microorganism. The median lethal dose (LD50) on solid media was between 90 and 112 mg/L GLY (among adjuvants, which are also included in the Roundup® formulation), which corresponds to a dilution percentage about 100 times lower than that used in agriculture. The LOAEL and NOAEL (lowest- and no-observed-adverse-effect levels) associated to morphology and growth were 33.75 and 31.5 mg/L GLY among adjuvants, respectively. The formulation R450 proved to be much more active than technical GLY. At the LD50 and lower concentrations, R450 impaired growth, cellular polarity, endocytosis, and mitochondria (average number, total volume and metabolism). In contrast with the depletion of mitochondrial activities reported in animal studies, R450 caused a stimulation of mitochondrial enzyme activities, thus revealing a different mode of action of Roundup® on energetic metabolism. These mitochondrial disruptions were also evident at a low dose corresponding to the NOAEL for macroscopic parameters, indicating that these mitochondrial biomarkers are more sensitive than those for growth and morphological ones. Altogether, our data indicate that GBH toxic effects on soil filamentous fungi, and thus potential impairment of soil ecosystems, may occur at doses far below recommended agricultural application rate.

Keywords

Glyphosate Roundup® Soil Aspergillus nidulans Toxicity Mitochondrial metabolism Low doses 

Supplementary material

11356_2016_6596_MOESM1_ESM.pdf (4.6 mb)
ESM 1(PDF 4711 kb)
11356_2016_6596_MOESM2_ESM.mp4 (13.6 mb)
ESM 2(MP4 13967 kb)
11356_2016_6596_MOESM3_ESM.mp4 (12.2 mb)
ESM 3(MP4 12531 kb)

References

  1. Aparicio VC, De Gerónimo E, Marino D, Primost J, Carriquiriborde P, Costa JL (2013) Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere 93:1866–1873CrossRefGoogle Scholar
  2. Astiz M, de Alaniz MJ, Marra CA (2009) Effect of pesticides on cell survival in liver and brain rat tissues. Ecotoxicol Environ Saf 72:2025–2032CrossRefGoogle Scholar
  3. Aumaitre LA (2002) New feeds from genetically modified plants: substantial equivalence, nutritional equivalence and safety for animals and animal products. Productions Animales 15:97–108Google Scholar
  4. Bentley R (1990) The shikimate pathway—a metabolic tree with many branches. Crit. Rev. Biochem Mol Biol 25:307–384CrossRefGoogle Scholar
  5. Bøhn T, Cuhra M, Traavik T, Sanden M, Fagan J, Primicerio R (2014) Compositional differences in soybeans on the market: glyphosate accumulates in Roundup Ready GM soybeans. Food Chem 153:207–215CrossRefGoogle Scholar
  6. Braconi D, Sotgiu M, Millucci L, Paffetti A, Tasso F, Alisi C, Martini S, Rappuoli R, Lusini P, Sprocati AR, Rossi C, Santucci A (2006) Comparative analysis of the effects of locally used herbicides and their active ingredients on a wild-type wine Saccharomyces cerevisiae strain. J Agric Food Chem 54:3163–3172CrossRefGoogle Scholar
  7. Boocock MR, Coggins JR (1983) Kinetics of 5-enolpyruvylshikimate-3-phosphate synthase inhibition by glyphosate. FEBS Lett 154:127–133CrossRefGoogle Scholar
  8. Bringolf RB, Cope WG, Mosher S, Barnhart MC, Shea D (2007) Acute and chronic toxicity of glyphosate compounds to glochidia and juveniles of Lampsilis siliquoidea (Unionidae). Environ Toxicol Chem 26:2094–2100CrossRefGoogle Scholar
  9. Carranza CS, Barberis CL, Chiacchiera SM, Magnoli CE (2014) Influence of the pesticides glyphosate, chlorpyrifos and atrazine on growth parameters of nonochratoxigenic Aspergillus section Nigri strains isolated from agricultural soils. J Environ Sci Health 49:747–755CrossRefGoogle Scholar
  10. Catcheside DE, Storer PJ, Klein B (1985) Cloning of the ARO cluster gene of Neurospora crassa and its expression in Escherichia coli. Mol Gen Genet 199:446–451CrossRefGoogle Scholar
  11. Charles IG, Keyte JW, Brammar WJ, Smith M, Hawkins AR (1986) The isolation and nucleotide sequence of the complex AROM locus of Aspergillus nidulans. Nucleic Acids Res 14:2201–2213CrossRefGoogle Scholar
  12. Clair E, Linn L, Travert C, Amiel C, Séralini G-E, Panoff J-M (2012) Effects of Roundup(®) and glyphosate on three food microorganisms: Geotrichum candidum, Lactococcus lactis subsp. cremoris and Lactobacillus delbrueckii subsp. bulgaricus. Curr Microbiol 64:486–491CrossRefGoogle Scholar
  13. Costa R, Ayscough KR (2005) Interactions between Sla1p, Lsb5p and Arf3p in yeast endocytosis. Biochem Soc Trans 33:1273–1275CrossRefGoogle Scholar
  14. Cove DJ (1966) The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta 113:51–56CrossRefGoogle Scholar
  15. Cox C (2004) Herbicide factsheet—glyphosate. J Pesticide Reform 24:10–15Google Scholar
  16. Cuhra M (2015) Review of GMO safety assessment studies: glyphosate residues in Roundup Ready crops is an ignored issue. Env Sci Eur 27:20. doi:10.1186/s12302-015-0052-7 CrossRefGoogle Scholar
  17. Cuhra M, Traavik T, Bøhn T (2013) Clone- and age-dependent toxicity of a glyphosate commercial formulation and its active ingredient in Daphnia magna. Ecotoxicology 22:251–262CrossRefGoogle Scholar
  18. Duke SO, Baerson SR, Rimando AM (2003) Herbicides: glyphosate. In: Plimmer JR, Gammon DW, Ragsdale NN (eds) Encyclopedia of agrochemicals. John Wiley & Sons, New York, USA, pp 708–869Google Scholar
  19. Duke SO, Powles SB (2008) Glyphosate: a once-in-a-century herbicide. Pest manage Sci 64:319–325CrossRefGoogle Scholar
  20. Englard S, Siegel L (1969) Mitochondrial L-malate dehydrogenase of beef heart:[EC 1.1.1.37 l-Malate: NAD oxidoreductase]. Methods Enzymol 13:99–106CrossRefGoogle Scholar
  21. Fansler B, Lowenstein JM (1969) Aconitase from pig heart. Methods Enzymol 13:26–30CrossRefGoogle Scholar
  22. Fischer-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND (2000) Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc 198:246–259CrossRefGoogle Scholar
  23. Flipphi M, Oestreicher N, Nicolas V, Guitton A, Vélot C (2014) The Aspergillus nidulans acuL gene encodes a mitochondrial carrier required for the utilization of carbon sources that are metabolized via the TCA cycle. Fungal Genet Biol 68:9–22CrossRefGoogle Scholar
  24. Funke T, Yang Y, Han H, Healy-Fried M, Olesen S, Becker A, Schönbrunn E (2009) Structural basis of glyphosate resistance resulting from the double mutation Thr97 -> Ile and Pro101 -> Ser in 5-enolpyruvylshikimate-3-phosphate synthase from Escherichia coli. J Biol Chem 284:9854–9860CrossRefGoogle Scholar
  25. Gunatilleke IAUN, Arst HN Jr, Scazzocchio C (1976) Three genes determine the carboxin sensitivity of mitochondrial succinate oxidation in Aspergillus nidulans. Genet Res 26:297–305CrossRefGoogle Scholar
  26. Haney RL, Senseman SA, Hons FM, Zuberer DA (2000) Effect of glyphosate on soil microbial activity and biomass. Weed Sci 48:89–93CrossRefGoogle Scholar
  27. Hedberg D, Wallin M (2010) Effects of Roundup and glyphosate formulations on intracellular transport, microtubules and actin filaments in Xenopus laevis melanophores. Toxicol in Vitro 24:795–802CrossRefGoogle Scholar
  28. Hickey PC, Swift SR, Roca MG, Read ND (2005) Live-cell imaging of filamentous fungi using vital fluorescent dyes and confocal microscopy. In: Savidge T, Pothoulakis C (eds) Methods in microbiology, vol 35, Microbial Imaging. Elsevier, London, pp 63–87Google Scholar
  29. James C (2011) Global status of commercialized biotech/GM crops. ISAAA Brief No 43. ISAAA, Ithaca, NYGoogle Scholar
  30. Jiraungkoorskul W, Upatham ES, Kruatrachue M, Sahaphong S, Vichasri-Grams S, Pokethitiyook P (2003) Biochemical and histopathological effects of glyphosate herbicide on Nile tilapia (Oreochromis niloticus). Environ Toxicol 18:260–267CrossRefGoogle Scholar
  31. Kappas A (1988) On the mutagenic and recombinogenic activity of certain herbicides in Salmonella typhimurium and in Aspergillus nidulans. Mutation Res 204:615–621CrossRefGoogle Scholar
  32. Kappas A, Georgopoulos SG, Hastie AC (1974) On the genetic activity of benzimidazole and thiophanate fungicides on diploid Aspergillus nidulans. Mutation Res 26:17–27CrossRefGoogle Scholar
  33. Kregiel D (2012) Succinate dehydrogenase of Saccharomyces cerevisiae—the unique enzyme of TCA cycle—current knowledge and new perspectives. In: Canuto RA (ed) Biochemistry, genetics and molecular biology “dehydrogenases”. InTech, DOI. doi:10.5772/48413 Google Scholar
  34. Krzysko-Lupicka T, Sudol T (2008) Interactions between glyphosate and autochthonous soil fungi surviving in aqueous solution of glyphosate. Chemosphere 71:1386–1391Google Scholar
  35. Langiano Vdo C, Martinez CB (2008) Toxicity and effects of a glyphosate-based herbicide on the Neotropical fish Prochilodus lineatus. Comp Biochem Physiol C Toxicol Pharmacol 147:222–231CrossRefGoogle Scholar
  36. Lee H-L, Kan C-D, Tsai C-L, Liou M-J, Guo H-R (2009) Comparative effects of the formulation of glyphosate-surfactant herbicides on hemodynamics in swine. Clinical Toxicology 47:651–658CrossRefGoogle Scholar
  37. Lee SC, Schmidtke SN, Dangott LJ, Shaw B (2008) Aspergillus nidulans ArfB plays a role in endocytosis and polarized growth. Euk Cell 7:1278–1288CrossRefGoogle Scholar
  38. Li N, Oquendo E, Capaldi RA, Robinson JP, He YD, Hamadeh HK, Afshari CA, Lightfoot-Dunn R, Narayanan PK (2014) A systematic assessment of mitochondrial function identified novel signatures for drug-induced mitochondrial disruption in cells. Toxicol Sci 142:261–273CrossRefGoogle Scholar
  39. Lipok J, Studnik H, Gruyaert S (2010) The toxicity of Roundup® 360 SL formulation and its main constituents: glyphosate and isopropylamine towards non-target water photoautotrophs. Ecotoxicol Environ Saf 73:1861–1868CrossRefGoogle Scholar
  40. Lupi L, Miglioranza KS, Aparicio VC, Marino D, Bedmar F, Wunderlin DA (2015) Occurrence of glyphosate and AMPA in an agricultural watershed from the southeastern region of Argentina. Sci Total Environ 536:687–694CrossRefGoogle Scholar
  41. Maggio-Hall LA, Keller NP (2004) Mitochondrial beta-oxidation in Aspergillus nidulans. Mol Microbiol 54:1173–1185CrossRefGoogle Scholar
  42. Marc J, Mulner-Lorillon O, Bellé R (2004) Glyphosate-based pesticides affect cell-cycle regulation. Biol Cell 96:245–249CrossRefGoogle Scholar
  43. Martinelli SD, Kinghorn JR (1994) Aspergillus: 50 years on—progress in industrial microbiology, Volume 29. Elsevier, Amsterdam - London - New York - TokyoGoogle Scholar
  44. Mesnage R, Defarge N, Spiroux de Vendomois J, Séralini G-E (2015) Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food Chem Toxicol. doi:10.1016/j.fct.2015.08.012 Google Scholar
  45. Millstone E, Brunner E, Mayer S (1999) Beyond ‘substantial equivalence’. Nature 401:525–526CrossRefGoogle Scholar
  46. Mottier A, Kientz-Bouchart V, Serpentini A, Lebel JM, Jha AN, Costil K (2013) Effects of glyphosate-based herbicides on embryo-larval development and metamorphosis in the Pacific oyster, Crassostrea gigas. Aquat Toxicol 128–129:67–78CrossRefGoogle Scholar
  47. Nobels I, Spanoghe P, Haesaert G, Robbens J, Blust R (2011) Toxicity ranking and toxic mode of action evaluation of commonly used agricultural adjuvants on the basis of bacterial gene expression profiles. PLoS One 6, e24139. doi:10.1371/journal.pone.0024139 CrossRefGoogle Scholar
  48. Paganelli A, Gnazzo V, Acosta H, López SL, Carrasco AE (2010) Glyphosate-based herbicides produce teratogenic effects on vertebrates by impairing retinoic acid signaling. Chem Res Toxicol 23:1586–1595CrossRefGoogle Scholar
  49. Peixoto F (2005) Comparative effects of the Roundup and glyphosate on mitochondrial oxidative phosphorylation. Chemosphere 61:1115–1122CrossRefGoogle Scholar
  50. Penalva MA (2005) Tracing the endocytic pathway of Aspergillus nidulans with FM4-64. Fungal Genet Biol 42:963–975CrossRefGoogle Scholar
  51. Pereira CV, Moreira AC, Pereira SP, Machado NG, Carvalho FS, Sardao VA, Oliveira PJ (2009) Investigating drug-induced mitochondrial toxicity: a biosensor to increase drug safety? Curr Drug Saf 4:34–54CrossRefGoogle Scholar
  52. Peruzzo PJ, Porta AA, Ronco AE (2008) Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environ Pollut 156:61–66CrossRefGoogle Scholar
  53. Piola L, Fuchs J, Oneto ML, Basack S, Kesten E, Casabé N (2013) Comparative toxicity of two glyphosate-based formulations to Eisenia andrei under laboratory conditions. Chemosphere 91:545–551CrossRefGoogle Scholar
  54. Qiu H, Gen J, Ren H, Xia X, Wang X, Yu Y (2013) Physiological and biochemical responses of Microcystis aeruginosa to glyphosate and its Roundup® formulation. J Hazard Mater 248–249:172–176CrossRefGoogle Scholar
  55. Relyea RA (2005) The lethal impacts of Roundup and predatory stress on six species of North American tadpoles. Arch Environ Contam Toxicol 48:351–357CrossRefGoogle Scholar
  56. Riechers DE, Wax LM, Liebl RA, Bush DR (1994) Surfactant-increased glyphosate uptake into plasma membrane vesicles isolated from common lambsquarters leaves. Plant Physiol 105:1419–1425Google Scholar
  57. Roberts CF (1969) Isolation of multiple aromatic amino-acid mutants in A. nidulans. In: Roper JA, d’Azevedo JL (eds) Aspergillus news letter, Vol. 10, Sheffield, pp 19-21Google Scholar
  58. Sailaja KK, Satyaprasad K (2006) Degradation of glyphosate in soil and its effect on fungal population. J Environ Sci Eng 48:189–190Google Scholar
  59. Simonsen L, Fomsgaard IS, Svensmark B, Spliid NH (2008) Fate and availability of glyphosate and AMPA in agricultural soil. J Environ Sci Health B 43:365–375CrossRefGoogle Scholar
  60. Singer TP, Rocca E, Kearney EB (1966) Flavins and flavoproteins. In: Slater EC (ed), vol 1. Elsevier, Amsterdam, pp 391–426Google Scholar
  61. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85CrossRefGoogle Scholar
  62. Srere PA, Brazil H, Gonen (1963) Citrate condensing enzyme of pigeon breast muscle and moth flight muscle. Acta Chem Scand 17:S129–S134CrossRefGoogle Scholar
  63. Tsui MT, Chu LM (2003) Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere 52:1189–1197CrossRefGoogle Scholar
  64. Wardle DA, Parkinson D (1990) Effects of three herbicides on soil microbial biomass and activity. Plant Soil 122:21–28CrossRefGoogle Scholar
  65. Woodward J, Merrett MJ (1975) Induction potential for glyoxylate cycle enzymes during the cell cycle of Euglena gracilis. Eur J Biochem 55:555–559CrossRefGoogle Scholar
  66. Zaller JG, Heigl F, Ruess L, Grabmaier A (2014) Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem. Sci Rep 4:5634CrossRefGoogle Scholar
  67. Zobiole LH, Oliveira RS, Visentainer JV, Kremer RJ, Bellaloui N, Yamada T (2010) Glyphosate affects seed composition in glyphosate-resistant soybean. J Agric Food Chem 58:4517–4522CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Valérie Nicolas
    • 1
  • Nathalie Oestreicher
    • 2
    • 3
  • Christian Vélot
    • 2
    • 3
    • 4
  1. 1.UMS-IPSIT, US31 Inserm-UMS3679 CNRS, Plateforme d’Imagerie CellulaireUniv. Paris-Sud, Université Paris-Saclay, Faculté de PharmacieChâtenay-MalabryFrance
  2. 2.Laboratoire VEAC, Univ. Paris-Sud, Université Paris-Saclay, Faculté des SciencesOrsayFrance
  3. 3.Pôle Risques MRSH-CNRS, Université de Caen, Esplanade de la PaixCaenFrance
  4. 4.CRIIGENParisFrance

Personalised recommendations