Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 11, pp 10457–10476 | Cite as

Spatially valid data of atmospheric deposition of heavy metals and nitrogen derived by moss surveys for pollution risk assessments of ecosystems

  • Winfried Schröder
  • Stefan Nickel
  • Simon Schönrock
  • Michaela Meyer
  • Werner Wosniok
  • Harry Harmens
  • Marina V. Frontasyeva
  • Renate Alber
  • Julia Aleksiayenak
  • Lambe Barandovski
  • Alejo Carballeira
  • Helena Danielsson
  • Ludwig de Temmermann
  • Barbara Godzik
  • Zvonka Jeran
  • Gunilla Pihl Karlsson
  • Pranvera Lazo
  • Sebastien Leblond
  • Antti-Jussi Lindroos
  • Siiri Liiv
  • Sigurður H. Magnússon
  • Blanka Mankovska
  • Javier Martínez-Abaigar
  • Juha Piispanen
  • Jarmo Poikolainen
  • Ion V. Popescu
  • Flora Qarri
  • Jesus Miguel Santamaria
  • Mitja Skudnik
  • Zdravko Špirić
  • Trajce Stafilov
  • Eiliv Steinnes
  • Claudia Stihi
  • Lotti Thöni
  • Hilde Thelle Uggerud
  • Harald G. Zechmeister
Recent sediments: environmental chemistry, ecotoxicology and engineering

Abstract

For analysing element input into ecosystems and associated risks due to atmospheric deposition, element concentrations in moss provide complementary and time-integrated data at high spatial resolution every 5 years since 1990. The paper reviews (1) minimum sample sizes needed for reliable, statistical estimation of mean values at four different spatial scales (European and national level as well as landscape-specific level covering Europe and single countries); (2) trends of heavy metal (HM) and nitrogen (N) concentrations in moss in Europe (1990–2010); (3) correlations between concentrations of HM in moss and soil specimens collected across Norway (1990–2010); and (4) canopy drip-induced site-specific variation of N concentration in moss sampled in seven European countries (1990–2013). While the minimum sample sizes on the European and national level were achieved without exception, for some ecological land classes and elements, the coverage with sampling sites should be improved. The decline in emission and subsequent atmospheric deposition of HM across Europe has resulted in decreasing HM concentrations in moss between 1990 and 2010. In contrast, hardly any changes were observed for N in moss between 2005, when N was included into the survey for the first time, and 2010. In Norway, both, the moss and the soil survey data sets, were correlated, indicating a decrease of HM concentrations in moss and soil. At the site level, the average N deposition inside of forests was almost three times higher than the average N deposition outside of forests.

Keywords

Bioaccumulation Bioindication Heavy metals Moss Soil Nitrogen 

Notes

Acknowledgments

We thank the national authorities for funding the investigations and the United Kingdom Department for Environment, Food and Rural Affairs (Defra; contract AQ0810 and AQ0833), the UNECE (Trust Fund) and the Natural Environment Research Council (NERC) for funding the ICP Vegetation Programme Coordination Centre at CEH Bangor, UK. Personally, we thank Oleg Blum, Maria Dam, Anatoly M. Dunaev, Katrin Hyodal and Ivan Suchara.

Supplementary material

11356_2016_6577_MOESM1_ESM.docx (320 kb)
ESM 1 (DOCX 319 kb)

References

  1. Adriaenssens S, Staelens J, Baeten L, Verstraeten A, Boeckx P, Samson R, Verheyen K (2013) Influence of canopy budget model approaches on atmospheric deposition estimates to forests. Biogeochemistry 116:215–229CrossRefGoogle Scholar
  2. Akerblom S, Bignert A, Meili M, Sonesten L, Sundbom M (2014) Half a century of changing mercury levels in Swedish freshwater fish. Ambio 43:91–103CrossRefGoogle Scholar
  3. Austnes K (2015) Exceedance of critical loads in Norway in 2020—Comparing CCE and NIVA calculations. In: de Witt, H, Wathne BM (eds) Proceedings of the 30th Task Force meeting of the ICP Waters Programme in Grimstad, Norway 14th–16th October, 2014. Report No. SNO 6793–2015, ICP Waters 122/2015:33–37Google Scholar
  4. Barandovski L, Frontasyeva MV, Stafilov T, Šajn R, Ostrovnaya TM (2015) Multi-element atmospheric deposition in Macedonia studied by the moss biomonitoring technique. Environ Sci Pollut Res 22:16077–16097CrossRefGoogle Scholar
  5. Baron JS, Hall EK, Nolan BT, Finlay JC, Bernhardt ES, Harrison JA, Chan F, Boyer EW (2013) The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States. Biogeochemistry 114:71–92CrossRefGoogle Scholar
  6. Beudert B, Breit W (2014) Kronenraumbilanzen zur Abschätzung der Stickstoffgesamtdeposition in Waldökosysteme des Nationalparks Bayerischer Wald. Integrated Monitoring Programm an der Messstelle Forellenbach im Nationalpark Bayerischer Wald. Projekt 24314, im Auftrag des Umweltbundesamtes. Nationalparkverwaltung Bayerischer Wald Sachgebiet IVGoogle Scholar
  7. Bhavsar SP, Gewurtz SB, McGoldrick DJ, Keir MJ, Backus SM (2010) Changes in mercury levels in Great Lakes fish between 1970s and 2007. Environ Sci Technol 44(9):3273–3279CrossRefGoogle Scholar
  8. BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (2003) Hydrologischer Atlas von Deutschland. Freiburger Verlagsdienste GmbH, Freiburg i.BrGoogle Scholar
  9. Böhm E, Hillenbrand T, Marscheider-Weidemann F, Schempp C, Fuchs S, Scherer U, Lüttgert M (2000) Emissionsinventar Wasser für die Bundesrepublik Deutschland. UBA-Texte 53/2000, BerlinGoogle Scholar
  10. Breiman L, Friedman J, Ohlsen R, Stone C (1984) Classification and regression trees. Wadsworth, BelmontGoogle Scholar
  11. Breuer L, Vaché KB, Julich S, Frede HG (2008) Current concepts in nitrogen dynamics for mesoscale catchments. Hydrol Sci J 53:1059–1074CrossRefGoogle Scholar
  12. Bringmark L, Lundin L, Augustaitis A, Beudert B, Dieffenbach-Fries H, Dirnböck T, Grabner M-T, Hutchins M, Kram P, Lyulko I, Ruoho-Airola T, Vana M (2013) Trace metal budgets for forested catchments in Europe—Pb, Cd, Hg, Cu and Zn. Water Air Soil Pollut 224(1502):1–14Google Scholar
  13. Builtjes P, Schaap M, Wichink Kruit R, Nagel HD, Nickel S, Schröder W (2014) Impacts of heavy metal emissions on air quality and ecosystems in Germany. 1st Progress Report on behalf of the German Federal Environmental Agency, DessauGoogle Scholar
  14. Büttner G, Kosztra B, Maucha G, Pataki R (2012) Implementation and achievements of CLC2006. Bellaterra (Barcelona). Copenhagen:1–65Google Scholar
  15. CIESIN, FAO, CIAT (Center for International Earth Science Information Network—CIESIN—Columbia University, United Nations Food and Agriculture Programme—FAO, and Centro Internacional de Agricultura Tropical—CIAT) (2005) Gridded Population of the World, Version 3 (GPWv3): Population Count Grid. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density-future-estimates/data-download. Accessed Dec 2014
  16. de Witt H, Wathne BM (eds) (2015) Proceedings of the 30th Task Force meeting of the ICP Waters Programme in Grimstad, Norway 14th–16th October, 2014. Report No. SNO 6793–2015, ICP Waters 122/2015Google Scholar
  17. Dirnböck E, Grandin U, Bernhardt-Römermann M, Beudert B, Canullo R, Forsius M, Grabner M-T, Holmberg M, Kleemola S, Lundin L, Mirtl M, Neumann M, Pompei E, Salemaa M, Starlinger F, Staszewski T, Uziębło AK (2014) Forest floor vegetation response to nitrogen deposition in Europe. Glob Chang Biol 20(2):429–440CrossRefGoogle Scholar
  18. Dołęgowska S, Migaszewski ZM (2015) Plant sampling uncertainty: a critical review based on moss studies. Environ Rev 23(2):151–160CrossRefGoogle Scholar
  19. Downs SG, MacLeod CL, Nester JN (1998) Mercury precipitation and its relation to bioaccumulation in fish: a literature review. Water Air Soil Pollut 108:149–187CrossRefGoogle Scholar
  20. Driscoll CT, Driscoll KM, Roy KM, Dukett J (2007) Changes in the chemistry of lakes in the Adirondack region of New York following declines in acidic deposition. Appl Geochem 22(6):1181–1188CrossRefGoogle Scholar
  21. EEA (European Environment Agency) (2014) Effects of air pollution on European ecosystems. Past and future exposure of European freshwater and terrestrial habitats to acidifying and eutrophying air pollutants. EEA Technical report No 11/2014. Publications Office of the European Union, LuxembourgGoogle Scholar
  22. Eisele M, Leibundgut C (2002) Modelling nitrogen dynamics for a mesoscale catchment using a minimum information requirement (MIR) concept. Hydrol Sci J 47:753–768CrossRefGoogle Scholar
  23. ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, RedlandsGoogle Scholar
  24. EU (European Union) (2002) Ambient air pollution by mercury (Hg) position paper. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  25. FAO (Food and Agriculture Organization of the United Nations)/International Institute of Applied Systems Analysis (IIASA)/ISRIC-World Soil Information/Institute of Soil Science—Chinese Academy of Science (ISSCAS)/Joint Research Centre of the European Commission (JRC) (2009) Harmonized World Soil Database (version 1.1). FAO Rome, Italy/IASSA LaxenburgGoogle Scholar
  26. Förstner U (1995) Non-linear release of metals from aquatic sediments. In: Salomons W, Stigliani WM (eds) Biogeodynamics of pollutants in soils and sediments. Springer, Berlin, pp 247–307CrossRefGoogle Scholar
  27. Fuchs S, Scherer U, Wander R, Behrendt H, Venohr M, Opitz D (2010) Berechnung von Stoffeinträgen in die Fließgewässer Deutschlands mit dem Modell MONERIS. Nährstoffe, Schwermetalle und Polyzyklische aromatische Kohlenwasserstoffe. 1. Aufl. 1 Band. Dessau-Roßlau (UBA-Texte, 45/10)Google Scholar
  28. Futter MN, Valinia S, Löfgren S, Köhler SJ, Fölster J (2014) Long-term trends in water chemistry of acid-sensitive Swedish lakes show slow recovery from historic acidification. Ambio 43:77–90CrossRefGoogle Scholar
  29. Gandhi N, Tang RWK, Bhavsar SP, Arhonditsis GB (2014) Fish mercury levels appear to be increasing lately: a report from 40 years of monitoring in the province of Ontario, Canada. Environ Sci Technol 48(10):5404–5414CrossRefGoogle Scholar
  30. Garmo ØA, Skjelkvåle BL, de Wit HD, Colombo L, Curtis C, Fölster J, Hoffmann A, Hruška J, Høgåsen T, Jeffries DS, Keller WB, Krám P, Majer V, Monteith DT, Paterson AM, Rogora M, Rzychon D, Steingruber S, Stoddard JL, Vuorenmaa J, Worsztynowicz A (2014) Trends in surface water chemistry in acidified areas in Europe and North America from 1990 to 2008. Water Air Soil Pollut 225(1880):1–14Google Scholar
  31. Gassama N, Violette S (2012) Atmospheric, weathering and biological contributions in the chemical signature of stream water: the upper Iskar Reka watershed, Bulgaria. Hydrol Sci J 57:535–546CrossRefGoogle Scholar
  32. Gusev A, Ilyin I, Rozovskaya O, Shatalov V, Sokovych V, Travnikov O (2010) Modelling of heavy Metals and persistant organic pollutants: New developments. EMEP/MSC-E Technical Report 1/2009. Moscow: Meteorological Synthesizing Centre—East:1–149Google Scholar
  33. Hansen K, Thimonier A, Clarke N, Staelens J, Zlinda D, Waldner P, Marchetto A (2013) Atmospheric deposition to forests. In Ferretti M, Fischer R (eds) Forest monitoring. Methods for terrestrial investigations in Europe with an overview on North America and Asia. Dev Env Sci 12: 337–374Google Scholar
  34. Harmens H, Mills G, Hayes F, Jones L, Williams P, Participants of the ICP Vegetation (2006) ICP Vegetation annual report 2005/2006. ICP Vegetation Programme Coordination Centre. Centre for Ecology and Hydrology, Environment Centre Wales, UKGoogle Scholar
  35. Harmens H, Norris DA, Steinnes E, Kubin E, Piispanen J, Alber R, Aleksiayenak Y, Blum O, Coşkun M, Dam M, De Temmerman L, Fernández JA, Frolova M, Frontasyeva M, González-Miqueo L, Grodzińska K, Jeran Z, Korzekwa S, Krmar M, Kvietkus K, Leblond S, Liiv S, Magnússon SH, Maňkovská B, Pesch R, Rühling Å, Santamaria JM, Schröder W, Špirić Z, Suchara I, Thöni L, Urumov V, Yurukova L, Zechmeister HG (2010) Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe. Environ Pollut 158:3144–3156CrossRefGoogle Scholar
  36. Harmens H, Mills G, Hayes F, Norris D, Participants of the ICP Vegetation (2011a) ICP Vegetation annual report 2010/2011. ICP Vegetation Programme Coordination Centre. Centre for Ecology and Hydrology, Environment Centre Wales, UKGoogle Scholar
  37. Harmens H, Norris DA, Cooper DM, Mills G, Steinnes E, Kubin E, Thöni L, Aboal JR, Alber R, Carballeira A, Coskun M, De Temmerman L, Frolova M, Frontasyeva M, Gonzales-Miqueo L, Jeran Z, Leblond S, Liiv S, Mankovska B, Pesch R, Poikolainen J, Ruhling A, Santamaria JM, Simoneie P, Schröder W, Suchara I, Yurukova L, Zechmeister HG (2011b) Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe. Environ Pollut 159:2852–2860CrossRefGoogle Scholar
  38. Harmens H, Ilyin I, Mills G, Aboal JR, Alber R, Blum O, Coşkun M, De Temmerman L, Fernández JA, Figueira R, Frontasyeva M, Godzik B, Goltsova N, Jeran Z, Korzekwa S, Kubin E, Kvietkus K, Leblond S, Liiv S, Magnússon SH, Maňkovská B, Nikodemus O, Pesch R, Poikolainen J, Radnović D, Rühling Å, Santamaria JM, Schröder W, Spiric Z, Stafilov T, Steinnes E, Suchara I, Tabor G, Thöni L, Turcsányi G, Yurukova L, Zechmeister HG (2012) Country-specific correlations across Europe between modelled atmospheric cadmium and lead deposition and concentrations in mosses. Environ Pollut 166:1–9CrossRefGoogle Scholar
  39. Harmens H, Foan L, Simon V, Mills G (2013a) Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review. Environ Pollut 173:245–254CrossRefGoogle Scholar
  40. Harmens H, Mills G, Hayes F, Norris D, participants of the ICP Vegetation (2013b) ICP Vegetation annual report 2012/2013. ICP Vegetation Programme Coordination Centre. Centre for Ecology and Hydrology, Environment Centre Wales, UKGoogle Scholar
  41. Harmens H, Norris D, Mills G, the participants of the moss survey (2013c). Heavy metals and nitrogen in Mosses: Spatial Patterns in 2010/2011 and long-term temporal trends in Europe. ICP Vegetation Programme Coordination Centre, Centre for Ecology & Hydrology, BangorGoogle Scholar
  42. Harmens H, Schnyder E, Thöni L, Cooper DM, Mills G, Leblond S, Mohr K, Poikolainen J, Santamaria J, Skudnik M, Zechmeister HG, Lindroos A-J, Hanus-Illnar A (2014) Relationship between site-specific nitrogen concentrations in mosses and measured wet bulk atmospheric nitrogen deposition across Europe. Environ Pollut 194:50–59CrossRefGoogle Scholar
  43. Harmens H, Norris DA, Sharps K, Mills G, Alber R, Aleksiayenak Y, Blum O, Cucu-Man S-M, Dam M, De Temmerman L, Ene A, Fernández JA, Martinez-Abaigar J, Frontasyeva M, Godzik B, Jeran Z, Lazo P, Leblond S, Liiv S, Magnússon SH, Maňkovská B, Pihl Karlsson G, Piispanen J, Poikolainen J, Santamaria JM, Skudnik M, Špirić Z, Stafilov T, Steinnes E, Stihi C, Suchara I, Thöni L, Todoran L, Yurukova L, Zechmeister HG (2015) Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environ Pollut 200:93–104CrossRefGoogle Scholar
  44. Hastings DA, Dunbar PK (1999) Global land one-kilometer base elevation (GLOBE) digital elevation model, documentation, Volume 1.0. Key to Geophysical Records Documentation (KGRD) 34. National Oceanic and Atmospheric Administration; National Geophysical Data Center, BoulderGoogle Scholar
  45. Hettelingh J-P, Schütze G, de Vries W, van der Gon HD, Ilyin I, Reinds GJ, Slootweg J, Travnikov O (2015) Critical loads of cadmium, lead and mercury and their exceedances in Europe. In: de Vries W, Hettelingh J-P, Posch M (Eds) Critical loads and dynamic risk assessments. Environ Pollut 25:523–546CrossRefGoogle Scholar
  46. Holen S, Wright RF, Seifert I (2013) Effects of long range transported air pollution (LRTAP) on freshwater ecosystem services. ICP Waters Programme Centre. Norwegian Institute for Water Research Oslo, Report No. ICP Waters 115/2013 SNO 6561–2013Google Scholar
  47. Holy M, Pesch R, Schmidt G, Schroeder W (2011) Atmosphärische Nährstoffeinträge in den Dümmer. Limnologische Fachtagung Dümmer, StemshornGoogle Scholar
  48. ICP Vegetation (International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops) (2014) Monitoring of atmospheric deposition of heavy metals, nitrogen and POPs in Europe using bryophytes. Monitoring manual 2015 survey. United Nations Economic Commission for Europe Convention on Long-Range Transboundary Air Pollution. ICP Vegetation Moss Survey Coordination Centre, Dubna, Russian Federation, and Programme Coordination Centre. Bangor, Wales, UKGoogle Scholar
  49. Jenny H (1941/1994) Factors of soil formation: a system of quantitative pedology. Foreword by Ronald Amundson. Originally published: McGraw-Hill, New York 1941. With new foreword. Includes bibliographical references and index. Dover Publications, MineolaGoogle Scholar
  50. Kluge M, Pesch R, Schröder W, Hoffmann A (2013) Accounting for canopy drip effects of spatiotemporal trends of the concentrations of N in mosses, atmospheric N depositions and critical load exceedances: a case study from North-Western Germany. Environ Sci Eur 25(26):1–13Google Scholar
  51. Land CE (1971) Confidence intervals for linear functions of the normal mean and variance. Ann Math Stat 42:1187–1205CrossRefGoogle Scholar
  52. Langedal M, Ottesen RT (1998) Airborne pollution in five drainage basins in eastern Finnmark, Norway: an evaluation of overbank sediments as sampling medium for environmental studies and geochemical mapping. Water Air Soil Pollut 101(1–4):377–398CrossRefGoogle Scholar
  53. Lepom P, Irmer U, Wellmitz J (2012) Mercury levels and trends (1993–2009) in bream (Abramis brama L.) and zebra mussels (Dreissena polymorpha) from German surface waters. Chemosphere 86:202–211CrossRefGoogle Scholar
  54. Lepori F, Keck F (2012) Effects of atmospheric nitrogen deposition on remote freshwater ecosystems. Ambio 41(3):235–246CrossRefGoogle Scholar
  55. Likens GE, Bormann FH (1995) Biogeochemistry of a forested ecosystem, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  56. Meyer M, Pesch R, Schröder W, Steinnes E, Uggerud HT (2014) Spatial patterns and temporal trends of heavy metal concentrations in moss and surface soil specimens collected in Norway between 1990 and 2010. Environ Sci Eur 26(27):1–18Google Scholar
  57. Meyer M, Schröder W, Nickel S, Leblond S, Lindroos A-J, Mohr K, Poikolainen J, Santamaria JM, Skudnik M, Thöni L, Beudert B, Dieffenbach-Fries H, Schulte-Bisping H, Zechmeister HG (2015a) Relevance of canopy drip for the accumulation of nitrogen in moss used as biomonitors for atmospheric nitrogen deposition in Europe. Sci Total Environ 538:600–610CrossRefGoogle Scholar
  58. Meyer M, Schröder W, Pesch R, Steinnes E, Uggerudd HT (2015b) Multivariate association of regional factors with heavy metal concentrations in moss and natural surface soil sampled across Norway between 1990 and 2010. J Soils Sediments 14(11):1–15Google Scholar
  59. Michel A, Seidling W (eds) (2015) Forest Condition in Europe: 2015 Technical Report of ICP Forests. Report under the UNECE Convention on Long-Range Transboundary Air Pollution (CLRTAP). Vienna: BFW Austrian Research Centre for Forests. BFWDokumentation 21/2015:1–182Google Scholar
  60. Moldan F, Kjønaas OJ, Stuanes AO, Wright RF (2006) Increased nitrogen in runoff and soil following 13 years of experimentally increased nitrogen deposition to a coniferous forested catchment at GårdsjönGoogle Scholar
  61. Mues A, Kuenen J, Hendriks C, Manders A, Segers A, Scholz Y, Hueglin C, Builtjes P, Schaap M (2014) Sensitivity of air pollution simulations with LOTOS-EUROS to the temporal distribution of anthropogenic emissions. Atmos Chem Phys 14:939–955CrossRefGoogle Scholar
  62. Nelson JD, Ward RC (1981) Statistical consideration and sampling techniques for ground-water quality monitoring. Ground Water 19:617–625CrossRefGoogle Scholar
  63. New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25CrossRefGoogle Scholar
  64. Nickel S, Hertel A, Pesch R, Schröder W, Steinnes E, Uggerud HT (2014) Modelling and mapping spatio-temporal trends of heavy metal accumulation in moss and natural surface soil monitored 1990–2010 throughout Norway by multivariate generalized linear models and geostatistics. Atmos Environ 99:85–9CrossRefGoogle Scholar
  65. Nickel S, Hertel A, Pesch R, Schröder W, Steinnes E, Uggerud HT (2015a) Correlating concentrations of heavy metals in atmospheric deposition with respective accumulation in moss and natural surface soil for ecological land classes in Norway between 1990 and 2010. Environ Sci Pollut Res 22(11):8488–8498CrossRefGoogle Scholar
  66. Nickel S, Schröder W, Schaap M (2015b) Estimation des dépôts atmosphériques de métaux lourds en Allemagne par utilisation du modèle LOTOS-EUROS et des données issues des programmes de biosurveillance. Estimating atmospheric deposition of heavy metals in Germany using LOTOS-EUROS model calculations and data from biomonitoring programmes. Pollut Atmosph (in press)Google Scholar
  67. Noges P, Poikane S, Cardoso AC, van de Bund W (2006) Water framework directive. Lakeline 36–43Google Scholar
  68. Nygård T, Steinnes E, Røyset O (2012) Distribution of 32 elements in organic surface soils: Contributions from atmospheric transport of pollutants and natural sources. Water Air Soil Pollut 223:699–713CrossRefGoogle Scholar
  69. Olsen L, Sveian H, Ottesen D, Rise L (2013) Quaternary glacial, interglacial and interstadial deposits of Norway and adjacent onshore and offshore areas. In Olsen L, Fredin O, Olesen O (eds) Quaternary Geology of Norway. Geol Surv Norway Spec Publ 13:79–144Google Scholar
  70. Olsson U (2005) Confidence intervals for the mean of a log-normal distribution. J Stat Educ 13 (1) www.amstat.org/publications/jse/v13n1/olsson.html
  71. Oulehle F, Chuman T, Majer V, Hruška J (2013) Chemical recovery of acidified Bohemian lakes between 1984 and 2012: the role of acid deposition and bark beetle induced forest disturbance. Biogeochem 116(1–3):83–101CrossRefGoogle Scholar
  72. Pardo LH, Robin-Abbott MJ, Fenn ME, Goodale CL, Geiser LH, Driscoll CT, Allen EB, Baron JS, Bobbink R, Bowman WD, Clark CM, Emmett B, Gilliam FS, Greaver TL, Hall SJ, Lilleskov EA, Liu L, Lynch JA, Nadelhoffer KJ, Perakis SJ, Stoddard JL, Weathers KC, Dennis RL (2015) Effects and empirical critical loads of nitrogen for ecoregions of the United States. In: de Vries W, Hettelingh JP, Posch M (Eds) Critical loads and dynamic risk assessments. Nitrogen, acidity and metals in terrestrial and aquatic ecosystems. Environ Pollut 25:129–169CrossRefGoogle Scholar
  73. Pesch R, Schröder W, Dieffenbach-Fries H, Genßler L, Kleppin L (2008) Improving the design of environmental monitoring networks. Case study on the heavy metals in mosses survey in Germany. Ecol Informa 3:111–121CrossRefGoogle Scholar
  74. Prechtel A, Alewell C, Armbruster M, Bittersohl J, Cullen JM, Evans CD et al (2001) Response of sulphur dynamics in European catchments to decreasing sulphate deposition. Hydrol Earth Syst Sci Discus 5(3):311–326CrossRefGoogle Scholar
  75. Qarri F, Lazo P, Stafilov T, Frontasyeva M, Harmens H, Bekteshi L, Baceva K, Goryainova Z (2013) Multi-elements atmospheric deposition study in Albania. Environ Sci Pollut Res 21:2506–2518CrossRefGoogle Scholar
  76. Reible D, Lanczos T (eds) (2006) Assessment and remediation of contaminated sediments. Nato Science Series IV. Earth and Environmental Scieneces 73. Springer, DordrechtGoogle Scholar
  77. Rogora M, Arisci S, Marchetto A (2012) The role of nitrogen deposition in the recent nitrate decline in lakes and rivers in Northern Italy. Sci Total Environ 417–418:214–223CrossRefGoogle Scholar
  78. Schaap M, Timmermans RMA, Roemer M, Boersen GAC, Builtjes PJH, Sauter FJ, Velders GJM, Beck JP (2008) The LOTOS–EUROS model: description, validation and latest developments. Int J Environ Pollut 32(2):270–290CrossRefGoogle Scholar
  79. Schäfer S, Buchmeier G, Claus E, Duester L, Heininger P, Körner A, Mayer P, Paschke A, Rauert C, Reifferscheid G, Rüdel H, Schlechtriem C, Schröter-Kermani C, Schudoma D, Smedes F, Steffen D, Vietoris F (2015) Bioaccumulation in aquatic systems: methodological approaches, monitoring and assessment. Environ Sci Eur 27(5):1–10Google Scholar
  80. Schröder W, Pesch R (2007) Synthesizing bioaccumulation data from the German Metals in Mosses Surveys and relating them to ecoregions. Sci Total Environ 374:311–327CrossRefGoogle Scholar
  81. Schröder W, Garbe-Schönberg CD, Fränzle O (1991) Die Validität von Umweltdaten—Kriterien für ihre Zuverlässigkeit: Repräsentativität, Qualitätssicherung und-kontrolle. Umweltwiss Schadst Forsch 3:237–241CrossRefGoogle Scholar
  82. Schröder W, Pesch R, Matter Y, Göritz A, Genssler L, Dieffenbach-Fries H (2009) Trend der Schwermetall-Bioakkumulation 1990 bis 2005. Qualitätssicherung bei Probenahme, Analytik, geostatistischer Auswertung. Umweltwiss Schadst Forsch 21(6):549–557CrossRefGoogle Scholar
  83. Schröder W, Pesch R, Harmens H, Fagerli H (2012) Ilyin I (2012) Does spatial auto-correlation call for a revision of latest heavy metal and nitrogen deposition maps? Environ Sci Eur 24(20):1–15Google Scholar
  84. Schröder W, Pesch R, Hertel A, Schönrock S, Harmens H, Mills G, Ilyin I (2013) Correlation between atmospheric deposition of Cd, Hg and Pb and their concentrations in mosses specified for ecological land classes covering Europe. Atmos Pollut Res 4:267–274CrossRefGoogle Scholar
  85. Schröder W, Pesch R, Schönrock S, Harmens H, Mills G, Fagerli H (2014) Mapping correlations between nitrogen concentrations in atmospheric deposition and mosses for natural landscapes in Europe. Ecol Indic 36:563–571CrossRefGoogle Scholar
  86. Schröder W, Nickel S, Jenssen M, Riediger J (2015) Methodology to assess and map the potential development of forest ecosystems exposed to climate change and atmospheric nitrogen deposition: a pilot study in Germany. Sci Total Environ 521–522:108–122CrossRefGoogle Scholar
  87. Schwesig D, Matzner E (2001) Dynamics of mercury and methylmercury in forest floor and runoff of a watershed in Central Europe. Biogeochemistry 53:181–200CrossRefGoogle Scholar
  88. Sharpley AN, Bergström L, Aronsson L, Bechmann M, Bolster CH, Börling K, Djodjic F, Jarvie HP, Schoumans OF, Stamm C, Tonderski KS, Ulén B, Uusitalo R, Withers PJA (2015) Future agriculture with minimized phosphorus losses to waters: research needs and direction. Ambio 44(Suppl 2):S163–S179CrossRefGoogle Scholar
  89. Simpson D, Benedictow A, Berge H, Bergström R, Emberson LD, Fagerli H, Flechard CR, Hayman GD, Gauss M, Jonson JE, Jenkin ME, Nyíri A, Richter C, Semeena VS, Tsyro S, Tuovinen J-P, Valdebenito Á, Wind P (2014a) The EMEP MSCW chemical transport model—technical description. Atmos Chem Phys 12:7825–7865CrossRefGoogle Scholar
  90. Simpson D, Andersson C, Christensen JH, Engardt M, Geels C, Nyiri A, Posch M, Soares J, Sofiev M, Wind P, Langner J (2014b) Impacts of climate and emission changes on nitrogen deposition in Europe: a multi-model study. Atmos Chem Phys 14:6995–7017CrossRefGoogle Scholar
  91. Skjelkvåle BL, de Wit HA (eds) (2011) Trends in precipitation chemistry, surface water chemistry and aquatic biota in acidified areas in Europe and North America from 1990 to 2008. SNO 6218/11, ICP Waters report 106/2011Google Scholar
  92. Skjelkvåle BL, Steinnes E, Rognerud S, Fjeld E, Berg T, Røyset O (2006) Trace metals in Norwegian surface waters, soils, and lake sediments—relation to atmospheric deposition. Norwegian Institute for Water Research, Report SNO 5222–2006Google Scholar
  93. Skudnik M, Jeran Z, Batic F, Simončič P, Lojen S, Kastelec D (2014) Influence of canopy drip in the indicative N, S and δ15 content in moss Hypnum cupressiforme. Environ Pollut 190:27–35CrossRefGoogle Scholar
  94. Skudnik M, Jeran Z, Batič F, Simončič P, Kastelec D (2015) Potential environmental factors that influence the nitrogen concentration and δ15N values in the moss Hypnum cupressiforme collected inside and outside canopy drip lines. Environ Pollut 198:78–85CrossRefGoogle Scholar
  95. Soares HMVM, Boaventura RAR, Machado AASC, Esteves da Silva JCG (1999) Sediments as monitors of heavy metal contamination in Ave river basin (Portugal): multivariate analysis of data. Environ Pollut 105:311–323CrossRefGoogle Scholar
  96. Spearman CE (1904) The proof and measurement of association between two things. Am J Psychol 15:72–101CrossRefGoogle Scholar
  97. Špirić Z, Frontasyeva M, Steinnes E, Stafilov T (2012) Multi-element atmospheric deposition study in Croatia. Int J Environ Anal Chem 92(10):1200–1214CrossRefGoogle Scholar
  98. Špirić Z, Vučković I, Stafilov T, Kušan V, Bačev K, Frontasyeva M (2013) Air pollution study in Croatia using moss biomonitoring and ICP–AES and AAS analytical techniques. Arch Environ Contam Toxicol 65:33–46CrossRefGoogle Scholar
  99. Špirić S, Stafilov T, Vučković I, Glad M (2014a) Study of nitrogen pollution in Croatia by moss biomonitoring and Kjeldahl method. J Environ Sci Health Part A 49(12):1402–1408CrossRefGoogle Scholar
  100. Špirić Z, Vučković I, Stafilov T, Kušan V, Bačev K (2014b) Biomonitoring of air pollution with mercury in Croatia by using moss species and CV-AAS. Environ Monit Assess 186:4357–4366CrossRefGoogle Scholar
  101. Stegger U (2015) GIS-analysis of lithology based on Hydrological Atlas of Germany, table 1.5 (personal communication)Google Scholar
  102. Steinnes E (2013) Heavy metal contamination of the terrestrial environment from long-range atmospheric transport: evidence from 35 years of research in Norway. ES3 Web of Conference 1, 35001Google Scholar
  103. Steinnes E, Rühling Å, Lippo H, Mäkinen A (1997) Reference materials for large-scale metal deposition surveys. Accred Qual Assur 2(5):243–249CrossRefGoogle Scholar
  104. Steinnes E, Berg T, Uggerud HT (2011) Three decades of atmospheric metal deposition in Norway as evident from analysis of moss samples. Sci Total Environ 412–413:351–358CrossRefGoogle Scholar
  105. Tørseth K, Aas W, Breivik K, Fjæraa AM, Fiebig M, Hjellbrekke AG, Lund Myhre C, Solberg S, Yttri KE (2012) Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmos Chem Phys 12:5447–5481CrossRefGoogle Scholar
  106. Vignati DAL, Polesello S, Bettinetti R, Bank MS (2013) Mercury environmental quality standard for biota in Europe. Opportunities and chanllenges. Integr Environ Assess Manag 9:167–168CrossRefGoogle Scholar
  107. Waller K, Driscoll CT, Lynch J, Newcomb D, Roy K (2012) Long-term recovery of lakes in the Adirondack region of New York to decreases in acidic deposition. Atmos Environ 46:56–64CrossRefGoogle Scholar
  108. Weckwerth G (2001) Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany). Atmos Environ 35:5525–5536CrossRefGoogle Scholar
  109. WGE (Working Group on Effects) (2013) Benefits of air pollution control for biodiversity and ecosystem services. GenevaGoogle Scholar
  110. White ID, Mottershead DN, Harrison SJ (1998) Environmental systems, 2nd edn. Chapman & Hall, LondonGoogle Scholar
  111. Wolanski E, Boorman LA, Chícharo L, Langlois-Saliou E, Lara R, Plater AJ, Uncles RJ, Zalewski M (2004) Ecohydrology as a new tool for sustainable management of estuaries and coastal waters. Wetl Ecol Manag 12:235–276CrossRefGoogle Scholar
  112. Wosniok W (2015) Fallzahlen für das Moosmonitoring—Ergänzungvorschläge für das Monitoring manual 2015 survey (ICP Vegetation 2014). Arbeitspapier vom 04.09.2015. Universität Bremen, BremenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Winfried Schröder
    • 1
  • Stefan Nickel
    • 1
  • Simon Schönrock
    • 1
  • Michaela Meyer
    • 1
  • Werner Wosniok
    • 2
  • Harry Harmens
    • 3
  • Marina V. Frontasyeva
    • 4
  • Renate Alber
    • 5
  • Julia Aleksiayenak
    • 6
  • Lambe Barandovski
    • 7
  • Alejo Carballeira
    • 8
  • Helena Danielsson
    • 9
  • Ludwig de Temmermann
    • 10
  • Barbara Godzik
    • 11
  • Zvonka Jeran
    • 12
  • Gunilla Pihl Karlsson
    • 9
  • Pranvera Lazo
    • 13
  • Sebastien Leblond
    • 14
  • Antti-Jussi Lindroos
    • 15
  • Siiri Liiv
    • 16
  • Sigurður H. Magnússon
    • 17
  • Blanka Mankovska
    • 18
  • Javier Martínez-Abaigar
    • 19
  • Juha Piispanen
    • 20
  • Jarmo Poikolainen
    • 21
  • Ion V. Popescu
    • 22
  • Flora Qarri
    • 23
  • Jesus Miguel Santamaria
    • 24
  • Mitja Skudnik
    • 12
  • Zdravko Špirić
    • 25
  • Trajce Stafilov
    • 26
  • Eiliv Steinnes
    • 27
  • Claudia Stihi
    • 23
  • Lotti Thöni
    • 28
  • Hilde Thelle Uggerud
    • 29
  • Harald G. Zechmeister
    • 30
  1. 1.Chair of Landscape EcologyUniversity of VechtaVechtaGermany
  2. 2.Institute of StatisticsUniversity of BremenBremenGermany
  3. 3.ICP Vegetation Programme Coordination Centre, Centre for Ecology and Hydrology, Environment Centre WalesSwanseaUK
  4. 4.Moss Survey Coordination Centre, Joint Institute for Nuclear ResearchDubnaRussian Federation
  5. 5.Environmental Agency of BolzanoLaivesItaly
  6. 6.International Sakharov Environmental UniversityMinskBelarus
  7. 7.Institute of physics, Faculty of Natural sciences and mathematicsUniversity of SkopjeSkopjeMacedonia
  8. 8.University of Santiago de CompostelaSantiago de CompostelaSpain
  9. 9.Air Pollution & Abatement Strategies, IVL Swedish Environmental Research InstituteStockholmSweden
  10. 10.Veterinary and Agrochemical Research Centre CODA-CERVATervurenBelgium
  11. 11.Władysław Szafer Institute of Botany of the Polish Academy of SciencesKrakówPoland
  12. 12.Jožef Stefan InstituteLjubljanaSlovenia
  13. 13.University of TiranaTiranaAlbania
  14. 14.National Museum of Natural HistoryParisFrance
  15. 15.Natural Resources Institute Finland (Luke)HelsinkiFinland
  16. 16.Tallinn Botanic GardenTallinnEstonia
  17. 17.Icelandic Institute of Natural HistoryGarðabærIceland
  18. 18.Institute of Landscape EcologySlovak Academy of SciencesBratislavaSlovak Republic
  19. 19.University of La RiojaLogroñoSpain
  20. 20.Natural Resources Institute FinlandHelsinkiFinland
  21. 21.Natural Resources Institute Finland|University of OuluOuluFinland
  22. 22.Valahia University of TargovisteTargovisteRomania
  23. 23.University of VloraVlorëAlbania
  24. 24.Jesus Miguel Santamaría University of NavarraNavarraSpain
  25. 25.OIKON Ltd.—Institute for Applied EcologyZagrebsCroatia
  26. 26.Ss. Cyril and Methodius UniversitySkopjeMacedonia
  27. 27.Norwegian University of Science and TechnologyTrondheimNorway
  28. 28.FUB—Research Group for Environmental MonitoringRapperswilSwitzerland
  29. 29.Norwegian Institute for Air ResearchKjellerNorway
  30. 30.University of ViennaWienAustria

Personalised recommendations