Environmental Science and Pollution Research

, Volume 23, Issue 14, pp 14327–14337 | Cite as

Advantages and limitations of chemical extraction tests to predict mercury soil-plant transfer in soil risk evaluations

  • R. J. R. Monteiro
  • S. M. RodriguesEmail author
  • N. Cruz
  • B. Henriques
  • A. C. Duarte
  • P. F. A. M. Römkens
  • E. Pereira
Research Article


In this study, we compared the size of the mobile Hg pool in soil to those obtained by extractions using 2 M HNO3, 5 M HNO3, and 2 M HCl. This was done to evaluate their suitability to be used as proxies in view of Hg uptake by ryegrass. Total levels of Hg in soil ranged from 0.66 to 70 mg kg−1 (median 17 mg kg−1), and concentrations of Hg extracted increased in the order: mobile Hg < 2 M HNO3 < 5 M HNO3 < 2 M HCl. The percentage of Hg extracted relative to total Hg in soil varied from 0.13 to 0.79 % (for the mobile pool) to 4.8–82 % (for 2 M HCl). Levels of Hg in ryegrass ranged from 0.060 to 36 mg kg−1 (median 0.65 mg kg−1, in roots) and from 0.040 to 5.4 mg kg−1 (median 0.34 mg kg−1, in shoots). Although results from the 2 M HNO3 extraction appeared to the most comparable to the actual total Hg levels measured in plants, the 2 M HCl extraction better expressed the variation in plant pools. In general, soil tests explained between 66 and 86 % of the variability of Hg contents in ryegrass shoots. Results indicated that all methods tested here can be used to estimate the plant total Hg pool at contaminated areas and can be used in first tier soil risk evaluations. This study also indicates that a relevant part of Hg in plants is from deposition of soil particles and that splashing of soil can be more significant for plant contamination than actual uptake processes.

Graphical Abstract

Illustration of potential mercury soil-plant transfer routes


Agricultural soils Chemical availability Mercury Plant uptake Soil tests Risk assessment 



S.M. Rodrigues and B. Henriques acknowledge the financial support from the Portuguese Foundation for Science and Technology (FCT) (Project IF/01637/2013/CP1162/CT0020 and postdoctoral grant SFRH/BPD/112576/2015, respectively). Authors acknowledge the financial support of both FCT and “COMPETE” program through Project FCOMP-01-0124-FEDER-02800 (FCT PTDC/AGR-PRO/4091/2012).

Supplementary material

11356_2016_6564_MOESM1_ESM.doc (50 kb)
ESM 1 (DOC 50 kb)


  1. Bloom NS, Preus E, Katon J, Hiltner M (2003) Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal Chim Acta 479:233–248CrossRefGoogle Scholar
  2. Brand E, Peijnenburg W, Gronenberg B et al. (2009) Towards implementation of bioavailability measurements in the Dutch regulatory framework. RIVM Report 711701084Google Scholar
  3. Costley CT, Mossop KF, Dean JR, Garden LM, Marshall J, Carroll J (2000) Determination of mercury in environmental and biological samples using pyrolysis atomic absorption spectrometry with gold amalgamation. Anal Chim Acta 405:179–183CrossRefGoogle Scholar
  4. Degryse F, Vlassak V, Smolders E, Merckx R (2007) Mobilization of Cd upon acidification of agricultural soils: column study and field modelling. Eur J Soil Sci 58:152–165CrossRefGoogle Scholar
  5. EC (European Commission) (2002) Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feeGoogle Scholar
  6. Fernández-Martínez R, Rucandio MI (2005) Study of the suitability of HNO3 and HCl as extracting agents of mercury species in soils from cinnabar mines. Anal Bioanal Chem 381:1499–1506CrossRefGoogle Scholar
  7. Fernández-Martínez R, Loredo J, Ordóñez A, Rucandio MI (2005) Distribution and mobility of mercury in soils from an old mining area in Mieres, Asturias (Spain). Sci Total Environ 346:200–212CrossRefGoogle Scholar
  8. Fernández-Martínez R, Larios R, Gómez-Pinilla I, Gómez-Mancebo B, López-Andrés S, Loredo J, Ordóñez A, Rucandio I (2015) Mercury accumulation and speciation in plants and soils from abandoned cinnabar mines. Geoderma 253–254:30–38CrossRefGoogle Scholar
  9. Guney M, Welfringer B, de Repentigny C, Zagury GJ (2013) Children’s exposure to mercury-contaminated soils: exposure assessment and risk characterization. Arch Environ Contam Toxicol 65(2):345–355CrossRefGoogle Scholar
  10. Han Y, Kingston HM, Boylan HM, Rahman GMM, Shah S, Richter RC et al (2003) Speciation of mercury in soil and sediment by selective solvent and acid extraction. Anal Bioanal Chem 375:428–436Google Scholar
  11. Han FX, Su Y, Monts DL, Waggoner CA, Plodinec MJ (2006) Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA. Sci Total Environ 368(2-3):753–768CrossRefGoogle Scholar
  12. Henriques B, Rodrigues SM, Cruz N, Coelho C, Duarte AC, Römkens PFAM, Pereira E (2013) Risks associated with the transfer of toxic organo-metallic mercury from soils into the terrestrial feed chain. Environ Int 59:408–417CrossRefGoogle Scholar
  13. Houba VJG, Temminghoff EJM, Gaikhorst GA, Van Vark W (2000) Soil analysis procedures using 001 M calcium chloride as extraction reagent. Commun Soil Sci Plan Anal 31:1299–1396CrossRefGoogle Scholar
  14. Inacio M, Pereira V, Pinto M (2008) The soil geochemical atlas of Portugal: overview and applications. J Geochem Explor 98:22–33CrossRefGoogle Scholar
  15. ISO (1994) Soil quality - determination of pH. ISO 10390:1994Google Scholar
  16. ISO (1995) Soil quality - determination of organic and total carbon after dry combustion (elementary analysis). ISO 10694:1995Google Scholar
  17. Issaro N, Abi-Ghanem C, Bermond A (2009) Fractionation studies of mercury in soils and sediments: a review of the chemical reagents used for mercury extraction. Anal Chim Acta 631:1–12CrossRefGoogle Scholar
  18. Jing YD, He ZL, Yang XE, Sun CY (2008) Evaluation of soil tests for plant available mercury in a soil-crop rotation system. Commun Soil Sci Plan 39:3032–3046CrossRefGoogle Scholar
  19. Krauss M, Wolfgang W, Kobza J, Zech W (2002) Predicting heavy metal transfer from soil to plant: potential use of Freundlich-type functions. J Plant Nutr Soil Sci 165:3–8CrossRefGoogle Scholar
  20. Meers E, Samson R, Tack FMG, Ruttens A, Vandegehuchte M, Vangronsveld J, Verloo MG (2007) Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environ Exp Botany 60:385–396CrossRefGoogle Scholar
  21. Meng B, Feng X, Qiu G, Wang D, Liang P, Li P et al (2012) Inorganic mercury accumulation in rice (Oryza sativa L.). Environ Toxicol Chem 31:2093–2098CrossRefGoogle Scholar
  22. Millán R, Gamarra R, Schmid T, Sierra MJ, Quejido AJ, Sánchez DM, Cardona AI, Fernández M, Vera R (2006) Mercury content in vegetation and soils of the Almadén mining area (Spain). Sci Total Environ 368:79–87CrossRefGoogle Scholar
  23. Peijnenburg WJGM, Zablotskaja M, Vijver MG (2007) Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction. Ecotox Environ Saf 67:163–179CrossRefGoogle Scholar
  24. Pereira E, Rodrigues SM, Otero M, Válega M, Lopes CB, Pato P, Coelho JP, Lillebø AI, Pardal MA, Rocha R, Duarte AC (2008) Evaluation of an interlaboratory proficiency-testing exercise for total mercury in environmental samples of soils, sediments and fish tissue. TRAC-Trend Anal Chem 27:959–970CrossRefGoogle Scholar
  25. Reis AT, Rodrigues SM, Araújo C, Coelho JP, Pereira E, Duarte AC (2009) Mercury contamination in the vicinity of a chlor-alkali plant and potential risks to local population. Sci Total Environ 407:2689–2700CrossRefGoogle Scholar
  26. Reis AT, Rodrigues SM, Davidson CM, Pereira E, Duarte AC (2010) Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas. Chemosphere 81:1369–1377CrossRefGoogle Scholar
  27. Reis AT, Coelho JP, Rodrigues SM, Rocha R, Davidson CM, Duarte AC, Pereira E (2012) Development and validation of a simple thermo-desorption technique for mercury speciation in soils and sediments. Talanta 99:363–368CrossRefGoogle Scholar
  28. Reis AT, Duarte AC, Henriques B, Coelho C, Lopes CB, Mieiro CL, Tavares DS, Ahmad L, Coelho JP, Rocha LS, Cruz N, Monteiro RJR, Rocha R, Rodrigues S, Pereira E (2015a) An international proficiency test as a tool to evaluate mercury determination in environmental matrices. Trac- Trend Anal Chem 64:137–149CrossRefGoogle Scholar
  29. Reis AT, Coelho JP, Rucandio I, Davidson CM, Duarte AC, Pereira E (2015b) Thermo-desorption: a valid tool for mercury speciation in soils and sediments? Geoderma 237:98–104CrossRefGoogle Scholar
  30. Rodrigues SM, Henriques B, da Silva EF, Pereira ME, Duarte AC, Römkens PFAM (2010) Evaluation of an approach for the characterization of reactive and available pools of twenty potentially toxic elements in soils: part i—the role of key soil properties in the variation of contaminants’ reactivity. Chemosphere 81(11):1549–1559CrossRefGoogle Scholar
  31. Rodrigues S, Henriques B, Reis A, Duarte A, Pereira E, Römkens PFAM (2012a) Hg transfer from contaminated soils to plants and animals. Environ Chem Lett 10:61–67CrossRefGoogle Scholar
  32. Rodrigues SM, Pereira ME, Duarte AC, Römkens PFAM (2012b) Soil–plant–animal transfer models to improve soil protection guidelines: a case study from Portugal. Environ Int 39:27–37CrossRefGoogle Scholar
  33. Rodrigues SM, Pereira ME, Duarte AC, Römkens PFAM (2012c) Derivation of soil to plant transfer functions for metals and metalloids: impact of contaminant’s availability. Plant Soil 361:329–341CrossRefGoogle Scholar
  34. Rodrigues SM, Coelho C, Cruz N, Monteiro RJR, Henriques B, Duarte AC, Romkens PFAM, Pereira E (2014) Oral bioaccessibility and human exposure to anthropogenic and geogenic mercury in urban, industrial and mining areas. Sci Total Environ 496:649–661CrossRefGoogle Scholar
  35. Römkens PFAM, Guo HY, Chu CL, Liu TS, Chiang CF, Koopmans GF (2009) Characterization of soilmetal pools in paddy fields in Taiwan: chemical extraction and solid-solution partitioning. J. Soil Sediment 9:216–228CrossRefGoogle Scholar
  36. Rothenberg SE, Fenf X, Zhou W, Tu M, Jin B, You J (2012) Environment and genotype controls on mercury accumulation in rice (Oryza sativa L.) cultivated along a contamination gradient in Guizhou, China. Sci. Total Environ 426:272–280CrossRefGoogle Scholar
  37. Rytuba JJ (2003) Mercury from mineral deposits and potential environmental impact. Environ Geol 43:326–338Google Scholar
  38. US EPA (1998) Test methods for evaluating solid waste, physical/chemical methods, SW-846. US Government Printing Office, Washington, DCGoogle Scholar
  39. Válega M, Lima AIG, Figueira EMAP, Pereira E, Pardal MA, Duarte AC (2009) Mercury intracellular partitioning and chelation in a salt marsh plant, Halimione portulacoides (L.) Aellen: strategies underlying tolerance in environmental exposure. Chemosphere 74:530–536CrossRefGoogle Scholar
  40. Zhou J, Liu H, Du B, Shang L, Yang J, Wang Y (2015) Influence of soil mercury concentration and fraction on bioaccumulation process of inorganic mercury and methylmercury in rice (Oryza sativa L.). Environ Sci Pollut Res Int 22(8):6144–6154CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • R. J. R. Monteiro
    • 1
  • S. M. Rodrigues
    • 1
    Email author
  • N. Cruz
    • 1
  • B. Henriques
    • 1
    • 2
  • A. C. Duarte
    • 1
  • P. F. A. M. Römkens
    • 3
  • E. Pereira
    • 1
  1. 1.Centre for Environmental and Marine Studies (CESAM)/Department of ChemistryUniversidade de AveiroAveiroPortugal
  2. 2.Interdisciplinary Centre of Marine and Environmental Research (CIIMAR)PortoPortugal
  3. 3.Alterra – Wageningen University and Research CenterWageningenThe Netherlands

Personalised recommendations