Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 14, pp 14621–14635 | Cite as

Rhizosphere of Avicennia marina (Forsk.) Vierh. as a landmark for polythene degrading bacteria

  • Mohd. Shahnawaz
  • Manisha K. Sangale
  • Avinash B. Ade
Research Article

Abstract

Due to high durability, cheap cost, and ease of manufacture, 311 million tons of plastic-based products are manufactured around the globe per annum. The slow/least rate of plastic degradation leads to generation of million tons of plastic waste per annum, which is of great environmental concern. Of the total plastic waste generated, polythene shared about 64 %. Various methods are available in the literature to tackle with the plastic waste, and biodegradation is considered as the most accepted, eco-friendly, and cost-effective method of polythene waste disposal. In the present study, an attempt has been made to isolate, screen, and characterize the most efficient polythene degrading bacteria by using rhizosphere soil of Avicennia marina as a landmark. From 12 localities along the west coast of India, a total of 123 bacterial isolates were recorded. Maximum percent weight loss (% WL; 21.87 ± 6.37 %) was recorded with VASB14 at pH 3.5 after 2 months of shaking at room temperature. Maximum percent weight gain (13.87 ± 3.6 %) was reported with MANGB5 at pH 7. Maximum percent loss in tensile strength (% loss in TS; 87.50 ± 4.8 %) was documented with VASB1 at pH 9.5. The results based on the % loss in TS were only reproducible. Further, the level of degradation was confirmed by scanning electron microscopic (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis. In SEM analysis, scions/crakes were found on the surface of the degraded polythene, and mass of bacterial cell was also recorded on the weight-gained polythene strips. Maximum reduction in carbonyl index (4.14 %) was recorded in untreated polythene strip with Lysinibacillus fusiformis strain VASB14/WL. Based on 16S ribosomal RNA (rRNA) gene sequence homology, the most efficient polythene degrading bacteria were identified as L. fusiformis strainVASB14/WL and Bacillus cereus strain VASB1/TS.

Keywords

Avicennia marina Polythene degradation Percent weight loss Percent loss in tensile strength 16S rRNA 

Notes

Acknowledgments

This work was a part of the project funded by Board of College and University Development (BCUD-2012-14), Savitribai Phule Pune University, Pune. MS is thankful to University Grants Commission-Maulana Azad National Fellowship (UGC-MANF-2013-14-MUS-JAM-22369) for minorities for the financial assistance. MKS is also thankful to UGC-BSR (UGC232 (004)) for providing the research fellowship to carry out the work

Funding

This work was supported by Board of College and University Development (BCUD-2012-14), Savitribai Phule Pune University, Pune-411007, Maharashtra, India

Compliance with ethical standard

Conflict of interest

The authors declare there are no potential conflicts of interest.

Supplementary material

11356_2016_6542_MOESM1_ESM.docx (788 kb)
ESM 1 (DOCX 787 kb)

References

  1. Abrusci C, Pablos JL, Corrales T, López-Marín J, Marína I, Catalina F (2011) Biodegradation of photo-degraded mulching films based on polyethylenes and stearates of calcium and iron as pro-oxidant additives. Int Biodeter Biodegr 65:451–459. doi: 10.1016/j.ibiod.2010.10.012 CrossRefGoogle Scholar
  2. Albertsson A-C, Karlsson S (1988) The three stages in degradation of polymers-polyethylene as a model substance. J Appl Polym Sci 35:1289. doi: 10.1002/app.1988.070350515 CrossRefGoogle Scholar
  3. Albertsson A-C, Andersson SO, Karlsson S (1987) The mechanism of biodegradation of polyethylene. Polym Degrad Stab 18:73–87CrossRefGoogle Scholar
  4. Albertsson A-C, Banhidi ZG (1980) Microbial and oxidative effects in degradation of polyethene. J Appl Polym Sci 25:655–1671CrossRefGoogle Scholar
  5. Albertsson A-C, Barenstedt C, Karlsson S (1994) Abiotic degradation products from enhanced environmentally degradable polyethylene. Acta Polym 45:97–103CrossRefGoogle Scholar
  6. Aneja KR (2003) Experiments in microbiology, plant pathology and biotechnology, 4th edn. New Age International, New DelhiGoogle Scholar
  7. Artetxe M, Lopez G, Amutio M, Elordi G, Bilbao J, Olazar M (2013) Cracking of HDPE pyrolysis waxes on HZSM-5 catalysts of different acidity. Ind Eng Chem Res. doi: 10.1021/ie4014869 Google Scholar
  8. Arutchelvi J, Sudhakar M, Arkatkar A, Doble M, Bhaduri S, Uppara PV (2008) Biodegradation of polyethylene and polypropylene. Indian J Biotechnol 7:9–22Google Scholar
  9. ASTM D882-12 (2012) Standard test method for tensile properties of thin plastic sheeting. ASTM International, West Conshohocken. doi: 10.1520/D0882-12 Google Scholar
  10. Aswale P (2010) Studies on bio-degradation of polythene, Ph. D. thesis, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, IndiaGoogle Scholar
  11. Aswale P, Ade A (2008) Assessment of the biodegradation of polythene. Bioinfolet 5:239Google Scholar
  12. Aswale PN, Ade AB (2009) Effect of pH on biodegradation of polythene by Serretia marscence. The Ecotech 1:152–153Google Scholar
  13. Azzarello MY, Van Vleet ES (1987) Marine birds and plastic pollution. Mar Ecol Prog Ser 37:230–295CrossRefGoogle Scholar
  14. Balasubramanian V, Natarajan K, Hemambika B, Ramesh N, Sumathi CS, Kottaimuthu R, Kannan VR (2010) High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett Appl Microbiol 51:205–211. doi: 10.1111/j.1472-765X.2010.02883.x Google Scholar
  15. Bhandare PS, Lee BK, Krishnan K (1997) Study of pyrolysis and incineration of disposable plastics using combined TG/FR-IR technique. J Thermal Anal 49:361–366CrossRefGoogle Scholar
  16. Chandra R, Rustgi R (1997) Biodegradation of maleated linear low-density polyethylene and starch blends. Polym Degrad Stabil 56:185–202CrossRefGoogle Scholar
  17. Chaturvedi S, Chandra R, Rai V (2008) Multiple antibiotic resistance patterns of rhizospheric bacteria isolated from Phragmites australis growing in constructed wetland for distillery effluent treatment. J Environ Biol 29(1):117–124Google Scholar
  18. Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Marine Poll Bull 44:842–52CrossRefGoogle Scholar
  19. Dhami NK, Mukherjee A, Reddy MS (2013) Viability of calcifying bacterial formulations in fly ash for applications in building materials. J Ind Microbiol Biotechnol 40:1403–1413. doi: 10.1007/s10295-013-1338-7 CrossRefGoogle Scholar
  20. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  21. El-Hussein AA, Elsalahi RH, Osman AG, Sherif AM, El-Siddig MA (2014) Isolation and 16S rRNA-Based Identification of Benomyl-Degrading Bacteria. Br Biotechnol J 4(6):670–683CrossRefGoogle Scholar
  22. El-Shafei HA, El-Nasser NHA, Kansoh AL, Ali AM (1998) Biodegradation of disposable polyethylene by fungi and Streptomyces species. Polym Degrad Stab 62:361–365CrossRefGoogle Scholar
  23. Esmaeili A, Pourbabaee AA, Alikhani HA, Shabani F, Esmaeili E (2013) Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil. PLoS ONE 8(9):e71720. doi: 10.1371/journal.pone.0071720 CrossRefGoogle Scholar
  24. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  25. Fontanella S, Bonhomme S, Koutny M, Husarova L, Brusson JM, Courdavault J-P, Pitteri S, Samuel G, Pichon G, Lemaire J, Delort A-M (2009) Comparison of the biodegradability of various polyethylene films containing pro-oxidant additives. Polym Degrad Stab 95:1011–1021. doi: 10.1016/j.polymdegradstab.2010.03.009 CrossRefGoogle Scholar
  26. Fuhs GW (1961) Der mikrobielle Abbau von Kohlenwasserstoffen. Arch Microbiol 39:374–422Google Scholar
  27. Gautam SP, Bundela PS, Pandey AK, Jamaluddin AMK, Sarsaiya S (2012) Diversity of cellulolytic microbes and the biodegradation of municipal solid waste by a potential strain. Int J Microbiol. doi: 10.1155/2012/325907 Google Scholar
  28. Giam CS, Chan HS, Neff GS, Atlas EL (1978) Phthalate ester plasticizers: a new class of marine pollutant. Science 199:419–420CrossRefGoogle Scholar
  29. Hadad D, Geresh S, Sivan (2005) A Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98:1093–1100. doi: 10.1111/j.1365-2672.2005.02553.x
  30. Harshvardhan K, Jha B (2013) Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Marine Poll Bull 77:100–106. doi: 10.1016/j.marpolbul.2013.10.025 CrossRefGoogle Scholar
  31. Ibiene AA, Stanley HO, Immanuel OM (2013) Biodegradation of polyethylene by Bacillus sp. indigenous to the Niger delta mangrove swamp. Nig J Biotech 26:68–79Google Scholar
  32. Iiyoshi Y, Tsutsumi Y, Nishida T (1998) Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. J Wood Sci 44:222–229CrossRefGoogle Scholar
  33. Jakubowicz I (2003) Evaluation of degradability of biodegradable polyethylene (PE). Polym Degrad Stabil 80:39–43CrossRefGoogle Scholar
  34. Jen-hou* L, Schwartz A (1961) Zum Verhalten von bakteriengemischen gegentiber polyfithylen verschiedenen mittleren Molekulargewichtss. Kunststoffe 51:317–320Google Scholar
  35. Kathiresan K (2003) Polythene and plastics-degrading microbes from the mangrove soil. Rev Biol Trop 51(3):629–634Google Scholar
  36. Kawai F, Watanabe M, Shibata M, Yokoyama S, Sudate Y, Hayashi S (2004) Comparative study on biodegradability of polyethylene wax by bacteria and fungi. Polym Degrad Stab 86:105–114CrossRefGoogle Scholar
  37. Kelly CT, White JR (1997) Photodegradation of polyethylene and polypropylene at slow strain-rate. Polym Degrad Stab 56:367–383CrossRefGoogle Scholar
  38. Kumar S, Hatha AAM, Christi KS (2007) Diversity and effectiveness of tropical mangrove soil microflora on the degradation of polythene carry bags. Rev Biol Trop 55:777–786Google Scholar
  39. Kyaw BM, Champakalakshmi R, Sakharkar MK, Lim CS, Sakharkar KR (2012) Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian J Microbio doi: 10.1007/s12088-012-0250-6
  40. Laist DW (1987) Overview of the biological effects of lost and discarded plastic debris in the marine environment. Marine Poll Bull 18(6B):319–326CrossRefGoogle Scholar
  41. Lee B, Pometto AL, Fratzke A, Bailey TB (1991) Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Appl Environ Microbiol 57:678–685Google Scholar
  42. Li X, Zeng Z, Chen Y, Xu Y (2004) Determination of phthalate acid esters plasticizers in plastic by ultrasonic solvent extraction combined with solid phase micro extraction using calix [4] arene fiber. Talanta 63:1013–1019CrossRefGoogle Scholar
  43. Nanda S, Sahu S, Abraham J (2010) Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. J Appl Sci Environ Manage 14:57–60Google Scholar
  44. Nowak B, Paja KJ, Drozd-Bratkowicz M, Rymarz G (2011) Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions. Int Biodeterior Biodegrad 65:757–767CrossRefGoogle Scholar
  45. Nwachukwu S, Obidi O, Odocha C (2010) Occurrence and recalcitrance of polyethylene bag waste in Nigerian soils. Afr J Biotechnol 9:6096–6104Google Scholar
  46. Otake Y, Kobayashi T, Asabe H, Murakami N, Ono K (1995) Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for over 32 years. J Appl Polym Sci 56:1789–1796CrossRefGoogle Scholar
  47. Pometto-III AL, Lee B, Johnson KE (1992) Production of an extracellular polyethylene-degrading enzyme(s) by Streptomyces species. Appl Environ Microbiol 58:731–733Google Scholar
  48. Potts JE (1978) Biodegradation. In: Jelinek HHG (ed) Aspects of Degradation and Stabilization of Polymers. Elsevier, New York, pp 617–658Google Scholar
  49. Pramila R, Ramesh KV (2011) Biodegradation of low density polyethylene (LDPE) by fungi isolated from marine water- a SEM analysis. Afr J Microbiol Res 5:5013–5018CrossRefGoogle Scholar
  50. Pramila R, Padmavathy K, Ramesh KV, Mahalakshmi K (2012) Brevibacillus parabrevis, Acinetobacter baumannii and Pseudomonas citronellolis—potential candidates for biodegradation of low density polyethylene (LDPE). African Journal of Bacteriology Research 4(1):9–14. doi: 10.5897/JBR12.003 Google Scholar
  51. Priyanka N, Archana T (2011) Biodegradability of polythene and plastic by the help of microorganism: a way for brighter future. J Environment Analytic Toxicol 1:111CrossRefGoogle Scholar
  52. Qureshi FS, Amin MB, Maadhah AG, Hamid SH (1990) Weather induced degradation of linear low density polyethylene: mechanical properties. J Polym Eng 9:67–84CrossRefGoogle Scholar
  53. Raaman N, Rajitha N, Jayshree A, Jegadeesh R (2012) Biodegradation of plastic by Aspergillus spp. isolated from polythene polluted sites around Chennai. J Acad Indus Res 1(6), 313-316.Google Scholar
  54. Rajeswari K, Subashkumar R, Vijayaraman K (2014) Degradation of textile dyes by isolated Lysinibacillussphaericus strain RSV-1 and Stenotrophomonas maltophilia strain RSV-2 and toxicity assessment of degraded product. J Environ Anal Toxicol 4:222. doi: 10.4172/2161-0525.1000222 Google Scholar
  55. Restrepo-Flórez J-M, Bassi A, Thompson MR (2014) Microbial degradation and deterioration of polyethylene—a review. Int Biodeterior Biodegradation 88:83–90CrossRefGoogle Scholar
  56. Roy PK, Titus S, Surekha P, Tulsi E, Deshmukh C, Rajagopal C (2008) Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium. Polym Degrad Stab 93:1917–1922CrossRefGoogle Scholar
  57. Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman D, Jee J, Kimovec FM, Koppstein D, Marks DH, Mittermiller PA, Nu´n˜ez SJ, Santiago M, Townes MA, Vishnevetsky M, Williams NE, Vargas MPN, Boulanger L-A, Bascom-Slack C, Strobel SA (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microb 77(17):6076–6084. doi: 10.1128/AEM.00521-11 CrossRefGoogle Scholar
  58. Rutkowska M, Heimowska A, Krasowska K, Janik H (2002) Biodegradability of polyethylene starch blends in sea water. Pol J Environ Stud 11:267–274Google Scholar
  59. Sangale MK, Shahnawaz M, Ade AB (2012) A review on biodegradation of polythene: the microbial approach. J Bioremed Biodeg 3(10):1–9. doi: 10.4172/2155-6199.1000164
  60. Santhoskumar AU, Devarajan S, Palanivelu K, Romauld SI (2014) A new additive formulation to improve biodegradation of low density polyethylene. Int J ChemTech Res 6(9):4194–4200Google Scholar
  61. Sarker M (2011) Converting waste plastic to hydrocarbon fuel materials. Energy Engineering 108(2):35–43. doi: 10.1080/01998595.2011.10389018 Google Scholar
  62. Satlewal A, Soni R, Zaidi M, Shouche Y, Goel R (2008) Comparative biodegradation of HDPE and LDPE using an indigenously developed microbial consortium. J Microbiol Biotechnol 18:477–482Google Scholar
  63. Seneviratne G, Tennakoon NS, Weerasekara MLMAW, Nandasena KA (2006) Polyethylene biodegradation by a developed Penicillium-Bacillus biofilm. Curr Sci 90:20–22Google Scholar
  64. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265. doi: 10.1016/j.biotechadv.2007.12.005 CrossRefGoogle Scholar
  65. Shahnawaz M, Sangale MK, Ade AB (2016) Bacteria based polythene degradation products: GC-MS analysis and toxicity testing. Environ Sci Pollut Res doi: 10.1007/s11356-016-6246-8 Google Scholar
  66. Sharma A, Sharma A (2004) Degradation assessment of low density polythene (LDP) and polythene (PP) by an indigenous isolate of Pseudomonas stutzeri. J Sci Ind Res 63:293–296Google Scholar
  67. Singh B (2005) Harmful effect of plastic in animals. The Indian Cow: The Scientific and Economic Journal 2(6):10–18Google Scholar
  68. Sivan A, Szanto M, Pavlov V (2006) Biofilm development of the polyethylene degrading bacterium Rhodococcusruber. Appl Microbiol Biotechnol 72:346–352CrossRefGoogle Scholar
  69. Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San FranciscoGoogle Scholar
  70. Sudhakar M, Trishul A, Doble M, Kumar KS, Jahan SS, Inbakandan D, Viduthalai RR, Umadevi VR, Murthy PS, Venkatesan R (2007) Biofouling and biodegradation of polyolefins in ocean waters. Polym Degrad Stab 92:1743–1752. doi: 10.1016/j.polymdegradstab.2007.03.029 CrossRefGoogle Scholar
  71. Suresh B, Maruthamuthu S, Palanisamy N, Ragunathan R, Pandiyaraj KN, Muralidharan VS (2011) Investigation on biodegradability of polyethylene by Bacillus cereus strain Ma-Su isolated from compost soil. Int Res J Microbiol 2:292–302Google Scholar
  72. Tafida TA (2013) Effect of starch pretreatment on the microbial degradation of low density polyethene carrier bags. Masters dissertation, Ahmadu Bello University, ZariaGoogle Scholar
  73. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035. doi: 10.1073/pnas.0404206101 CrossRefGoogle Scholar
  74. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefGoogle Scholar
  75. Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Björn A, Rowland SJ, Thompson RC, Galloway TS, Yamashita R, Ochi D, Watanuki Y, Moore C, Viet PH, Tana TS, Prudente M, Boonyatumanond R, Zakaria MP, Akkhavong K, Ogata Y, Hirai H, Iwasa S, Mizukawa K, Hagino Y, Imamura A, Saha M, Takada H (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc B 364:2027–2045CrossRefGoogle Scholar
  76. Trossarelli L, Brunella V (2003) Polyethylene: discovery and growth in UHMPE meeting. IFM Department of Chemistry, University of Turin, TorinoGoogle Scholar
  77. Usha R, Sangeetha T, Palaniswamy M (2011) Screening of polyethylene degrading microorganisms from garbage soil. Libyan Agric Res Cen J Intl 2:200–204Google Scholar
  78. Vijaya C, Reddy RM (2008) Impact of soil composting using municipal solid waste on biodegradation of plastics. Indian J Biotechnol 7:235–239Google Scholar
  79. Vona I, Costanza J, Cantor H, Robert W (1965) Manufacture of plastics. Wiley, New York 1(66):141–142Google Scholar
  80. Watanabe T, Ohtake Y, Asabe H, Murakami N, Furukawa M (2009) Biodegradability and degrading microbes of low-density polyethylene. J Appl Polym Sci 111:551–559CrossRefGoogle Scholar
  81. Weisburg WG, Barns SM (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacterio 173:697–703Google Scholar
  82. Yang J, Yang Y, Wu WM, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48(23):13776–84. doi: 10.1021/es504038a CrossRefGoogle Scholar
  83. Yi W, Wang B, Qu D (2012) Diversity of isolates performing Fe (III) reduction from paddy soil fed by different organic carbon sources. Afr J Biotechnol 11(19):4407–4417. doi: 10.5897/AJB11.1216 Google Scholar
  84. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) A bacterium that degrades and assimilates poly (ethylene terephthalate). Science 351(6278):1196–1199. doi: 10.1126/science.aad6359 CrossRefGoogle Scholar
  85. Zhang Y, Wang X-J, Chen S-Y, Guo L-Y, Song M-L, Feng H, Li C, Bai J-G (2015) Bacillus methylotrophicus isolated from the cucumber rhizosphere degrades ferulic acid in soil and affects antioxidant and rhizosphere enzyme activities. Plant Soil 392:309–321. doi: 10.1007/s11104-015-2464-y0

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mohd. Shahnawaz
    • 1
  • Manisha K. Sangale
    • 1
  • Avinash B. Ade
    • 1
  1. 1.Department of BotanySavitribai Phule Pune UniversityPuneIndia

Personalised recommendations