Environmental Science and Pollution Research

, Volume 23, Issue 13, pp 13023–13034 | Cite as

Physiological and transcriptional responses of Nitrosomonas europaea to TiO2 and ZnO nanoparticles and their mixtures

  • Ran YuEmail author
  • Junkang Wu
  • Meiting Liu
  • Lianghui Chen
  • Guangcan Zhu
  • Huijie Lu
Research Article


The short-term combined effects of two most extensively used nanoparticles (NPs) TiO2 NPs (n-TiO2) and ZnO NPs (n-ZnO) versus their individual cytotoxicities on a model ammonia-oxidizing bacterium, Nitrosomonas europaea, were investigated at both physiological and transcriptional levels. n-ZnO exerted more serious impairment effects on cell morphology, cell density, membrane integrity, and ammonia monooxygenase activity than n-TiO2. However, the co-existing n-TiO2 displayed a dose-dependent mitigation effect on n-ZnO cytotoxicity. Consistently, the n-TiO2 and n-ZnO mixture-impacted global transcriptional expression profile, obtained with the whole-genome microarray technique, was more comparable to the n-TiO2-impacted one than that impacted by n-ZnO. The expressions of numerous genes associated with heavy metal scavenging, DNA repair, and oxidative stress response were less up-regulated under the binary impacts of NP mixture than n-ZnO. Moreover, only n-ZnO alone stimulated the up-regulations of heavy metal resistance genes, which further implied the capacity of co-existing n-TiO2 to alleviate n-ZnO cytotoxicity. In addition, the damage of cell membrane structures and the suppression of cell membrane biogenesis-related gene expressions under the influence of either individual NPs or their combinations strongly suggested that the interruption of cell membranes and the associated metabolic activities would probably be one of NPs’ critical cytotoxicity mechanisms.


Nanoparticle Nitrosomonas europaea Toxicity Combined effect Microarray Transcriptional response 



This study was supported by the National Natural Science Foundation of China (No. 51208092), Natural Science Foundation of Jiangsu Province of China (BK2012124), and Doctoral Fund of Ministry of Education of China (20120092120010). We sincerely appreciate Professor Chang-ping Yu at the Institute of Urban Environment at Chinese Academy of Science for his kind offer of N. europaea cultures.

Supplementary material

11356_2016_6469_MOESM1_ESM.doc (382 kb)
ESM 1 (DOC 381 kb)


  1. Bardot C, Besse-Hoggan P, Carles L, Le Gall M, Clary G, Chafey P, Federici C, Broussard C, Batisson I (2015) How the edaphic Bacillus megaterium strain Mes11 adapts its metabolism to the herbicide mesotrione pressure. Environ Pollut 199:198–208CrossRefGoogle Scholar
  2. Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M, Hauser L, Hooper A, Klotz M, Norton J, Sayavedra-Soto L, Arciero D, Hommes N, Whittaker M, Arp D (2003) Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol 185:2759–2773CrossRefGoogle Scholar
  3. Chen J, Tang Y-Q, Li Y, Nie Y, Hou L, Li X-Q, Wu X-L (2014) Impacts of different nanoparticles on functional bacterial community in activated sludge. Chemosphere 104:141–148CrossRefGoogle Scholar
  4. Choi O, Hu Z (2009) Role of reactive oxygen species in determining nitrification inhibition by metallic/oxide nanoparticles. J Environ Eng 135:1365–1370CrossRefGoogle Scholar
  5. Engates KE, Shipley HJ (2011) Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ Sci Pollut Res 18:386–395CrossRefGoogle Scholar
  6. Ensign SA, Hyman MR, Arp DJ (1993) In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper. J Bacteriol 175:1971–1980Google Scholar
  7. Fang X, Yu R, Li B, Somasundaran P, Chandran K (2010) Stresses exerted by ZnO, CeO2 and anatase TiO2 nanoparticles on the Nitrosomonas europaea. J Colloid Interface Sci 348:329–334CrossRefGoogle Scholar
  8. Feris K, Otto C, Tinker J, Wingett D, Punnoose A, Thurber A, Kongara M, Sabetian M, Quinn B, Hanna C, Pink D (2010) Electrostatic interactions affect nanoparticle-mediated toxicity to gram-negative bacterium Pseudomonas aeruginosa PAO1. Langmuir 26:4429–4436CrossRefGoogle Scholar
  9. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222CrossRefGoogle Scholar
  10. Hai T, Frey KM, Steinbüchel A (2006) Engineered cyanophycin synthetase (CphA) from Nostoc ellipsosporum confers enhanced CphA activity and cyanophycin accumulation to Escherichia coli. Appl Environ Microbiol 72:7652–7660CrossRefGoogle Scholar
  11. Hooper AB, Vannelli T, Bergmann DJ, Arciero DM (1997a) Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie Van Leeuwenhoek 71:59–67CrossRefGoogle Scholar
  12. Hooper AB, Vannelli T, Bergmann DJ, Arciero DM (1997b) Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie Van Leeuwenhoek 71:59–67CrossRefGoogle Scholar
  13. Hou L, Xia J, Li K, Chen J, Wu XL, Li X (2013) Removal of ZnO nanoparticles in simulated wastewater treatment processes and its effects on COD and NH4 +-N reduction. Water Sci Technol 67:254–260CrossRefGoogle Scholar
  14. Hu P, Brodie EL, Suzuki Y, McAdams HH, Andersen GL (2005) Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol 187:8437–8449CrossRefGoogle Scholar
  15. JRC (2011). List of materials in the JRC nanomaterials (NM) repository.Google Scholar
  16. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Biol Med 51:1872–1881CrossRefGoogle Scholar
  17. Kvint K, Nachin L, Diez A, Nyström T (2003) The bacterial universal stress protein: function and regulation. Curr Opin Microbiol 6:140–145CrossRefGoogle Scholar
  18. Mu H, Chen Y, Xiao N (2011) Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion. Bioresour Technol 102:10305–10311CrossRefGoogle Scholar
  19. Newman MC (2009) Fundamentals of ecotoxicology. CRC Press, Boca Raton, FLGoogle Scholar
  20. Park S, Ely RL (2008) Genome-wide transcriptional responses of Nitrosomonas europaea to zinc. Arch Microbiol 189:541–548CrossRefGoogle Scholar
  21. Park S, Ely RL (2009) Whole-genome transcriptional and physiological responses of Nitrosomonas europaea to cyanide: identification of cyanide stress response genes. Biotechnol Bioeng 102:1645–1653CrossRefGoogle Scholar
  22. Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1109–1119CrossRefGoogle Scholar
  23. Radniecki TS, Ely RL (2008) Zinc chloride inhibition of Nitrosococcus mobilis. Biotechnol Bioeng 99:1085–1095CrossRefGoogle Scholar
  24. Radniecki TS, Semprini L, Dolan ME (2009) Expression of merA, amoA and hao in continuously cultured Nitrosomonas europaea cells exposed to zinc chloride additions. Biotechnol Bioeng 102:546–553CrossRefGoogle Scholar
  25.  State Environmental Protection Administration of China (SEPAC) (2002). Methods for monitoring and analysis of water and wastewater (4th Edition). China Environment Science Press (in Chinese), BeijingGoogle Scholar
  26. Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Particle Fibre Toxicol 10:15CrossRefGoogle Scholar
  27. Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76CrossRefGoogle Scholar
  28. Tan C, Fan W-H, Wang W-X (2012) Role of titanium dioxide nanoparticles in the elevated uptake and retention of cadmium and zinc in Daphnia magna. Environ Sci Technol 46:469–476CrossRefGoogle Scholar
  29. Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156CrossRefGoogle Scholar
  30. Tong T, Fang K, Thomas SA, Kelly JJ, Gray KA, Gaillard J-F (2014) Chemical interactions between nano-ZnO and nano-TiO2 in a natural aqueous medium. Environ Sci Technol 48:7924–7932CrossRefGoogle Scholar
  31. Wang H, Wu F, Meng W, White JC, Holden PA, Xing B (2013) Engineered nanoparticles may induce genotoxicity. Environ Sci Technol 47:13212–13214CrossRefGoogle Scholar
  32. Westerhoff P, Song G, Hristovski K, Kiser MA (2011) Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. J Environ Monit 13:1195–1203CrossRefGoogle Scholar
  33. Wu B, Wang Y, Lee Y-H, Horst A, Wang Z, Chen D-R, Sureshkumar R, Tang YJ (2010) Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes. Environ Sci Technol 44:1484–1489CrossRefGoogle Scholar
  34. Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750CrossRefGoogle Scholar
  35. Yu R, Chandran K (2010) Strategies of Nitrosomonas europaea 19718 to counter low dissolved oxygen and high nitrite concentrations. BMC Microbiol 10:70CrossRefGoogle Scholar
  36. Yu R, Fang X, Somasundaran P, Chandran K (2015) Short-term effects of TiO2, CeO2, and ZnO nanoparticles on metabolic activities and gene expression of Nitrosomonas europaea. Chemosphere 128:207–215CrossRefGoogle Scholar
  37. Zhao J, Wang Z, Dai Y, Xing B (2013) Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter. Water Res 47:4169–4178CrossRefGoogle Scholar
  38. Zheng X, Chen Y, Wu R (2011) Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge. Environ Sci Technol 45:7284–7290CrossRefGoogle Scholar
  39. Zheng X, Su Y, Chen Y, Wan R, Liu K, Li M, Yin D (2014) Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity. Environ Sci Technol 48:13800–13807CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ran Yu
    • 1
    Email author
  • Junkang Wu
    • 1
  • Meiting Liu
    • 1
  • Lianghui Chen
    • 1
  • Guangcan Zhu
    • 1
  • Huijie Lu
    • 2
  1. 1.Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water EnvironmentSoutheast UniversityNanjingChina
  2. 2.Department of Civil and Environmental EngineeringUniversity of VermontBurlingtonUSA

Personalised recommendations