Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Environmental application of nanotechnology: air, soil, and water

Abstract

Global deterioration of water, soil, and atmosphere by the release of toxic chemicals from the ongoing anthropogenic activities is becoming a serious problem throughout the world. This poses numerous issues relevant to ecosystem and human health that intensify the application challenges of conventional treatment technologies. Therefore, this review sheds the light on the recent progresses in nanotechnology and its vital role to encompass the imperative demand to monitor and treat the emerging hazardous wastes with lower cost, less energy, as well as higher efficiency. Essentially, the key aspects of this account are to briefly outline the advantages of nanotechnology over conventional treatment technologies and to relevantly highlight the treatment applications of some nanomaterials (e.g., carbon-based nanoparticles, antibacterial nanoparticles, and metal oxide nanoparticles) in the following environments: (1) air (treatment of greenhouse gases, volatile organic compounds, and bioaerosols via adsorption, photocatalytic degradation, thermal decomposition, and air filtration processes), (2) soil (application of nanomaterials as amendment agents for phytoremediation processes and utilization of stabilizers to enhance their performance), and (3) water (removal of organic pollutants, heavy metals, pathogens through adsorption, membrane processes, photocatalysis, and disinfection processes).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abanades JC, Alvarez D (2003) Conversion limits in the reaction of CO2 with lime. Energy Fuel 17:308–315

  2. Abbasizadeh S, Keshtkar AR, Mousavian MA (2014) Sorption of heavy metal ions from aqueous solution by a novel cast PVA/TiO2 nanohybrid adsorbent functionalized with amine groups. J Ind Eng Chem 20:1656–1664. doi:10.1016/j.jiec.2013.08.013

  3. Abdel Salam M, Burk RC (2008) Thermodynamics of pentachlorophenol adsorption from aqueous solutions by oxidized multi-walled carbon nanotubes. Appl Surf Sci 255:1975–1981. doi:10.1016/j.apsusc.2008.06.168

  4. Abdel-Ghani NT, El-Chaghaby GA, Helal FS (2014) Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. J Adv Res. doi:10.1016/j.jare.2014.06.001

  5. Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532. doi:10.1016/j.watres.2006.08.004

  6. Aguilar ZP (2013) Chapter 2—types of nanomaterials and corresponding methods of synthesis. In: Aguilar ZP (ed) Nanomaterials for medical applications. Elsevier, pp 33–82. doi:10.1016/B978-0-12-385089-8.00002-9

  7. Ahmed F, Santos CM, Vergara RAMV, Tria MCR, Advincula R, Rodrigues DF (2011) Antimicrobial applications of electroactive PVK-SWNT nanocomposites. Environ Sci Technol 46:1804–1810. doi:10.1021/es202374e

  8. Ahmed F, Santos CM, Mangadlao J, Advincula R, Rodrigues DF (2013) Antimicrobial PVK:SWNT nanocomposite coated membrane for water purification: performance and toxicity testing. Water Res 47:3966–3975. doi:10.1016/j.watres.2012.10.055

  9. Ai L, Zhang C, Liao F, Wang Y, Li M, Meng L, Jiang J (2011) Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J Hazard Mater 198:282–290. doi:10.1016/j.jhazmat.2011.10.041

  10. Al-Hamdi AM, Sillanpää M, Dutta J (2015) Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation. J Alloys Compd 618:366–371. doi:10.1016/j.jallcom.2014.08.120

  11. Amini M, Jahanshahi M, Rahimpour A (2013) Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes. J Membr Sci 435:233–241. doi:10.1016/j.memsci.2013.01.041

  12. An B, Zhao D (2012) Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe–Mn oxide nanoparticles. J Hazard Mater 211–212:332–341. doi:10.1016/j.jhazmat.2011.10.062

  13. Andreescu S, Njagi J, Ispas C, Ravalli MT (2009) JEM spotlight: applications of advanced nanomaterials for environmental monitoring. J Environ Monit 11:27–40

  14. Apul OG, Karanfil T (2015) Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review. Water Res 68:34–55. doi:10.1016/j.watres.2014.09.032

  15. Aquino A, Chan J, Giolma K, Loh M (2010) The effect of a fullerene water suspension on the growth, cell viability, and membrane integrity of Escherichia coli B23. J Exp Microbiol Immunol 14:13–20

  16. Arahman N, Maruyama T, Sotani T, Matsuyama H (2009) Fouling reduction of a poly(ether sulfone) hollow-fiber membrane with a hydrophilic surfactant prepared via non-solvent-induced phase separation. J Appl Polym Sci 111:1653–1658. doi:10.1002/app.29149

  17. Arcibar-Orozco JA, Rangel-Mendez JR, Bandosz TJ (2013) Reactive adsorption of SO2 on activated carbons with deposited iron nanoparticles. J Hazard Mater 246–247:300–309. doi:10.1016/j.jhazmat.2012.12.001

  18. Arcidiacono S, Pivarnik P, Mello CM, Senecal A (2008) Cy5 labeled antimicrobial peptides for enhanced detection of Escherichia coli O157: H7. Biosens Bioelectron 23:1721–1727

  19. Arias LR, Yang L (2009) Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 25:3003–3012. doi:10.1021/la802769m

  20. Aruoja V, Dubourguier H-C, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468. doi:10.1016/j.scitotenv.2008.10.053

  21. Auffan M et al (2008) Enhanced adsorption of arsenic onto maghemites nanoparticles: As(III) as a probe of the surface structure and heterogeneity. Langmuir 24:3215–3222. doi:10.1021/la702998x

  22. Augugliaro V, Litter M, Palmisano L, Soria J (2006) The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J Photochem Photobiol C: Photochem Rev 7:127–144

  23. Badawy ME, Rabea EI, Rogge TM, Stevens CV, Steurbaut W, Höfte M, Smagghe G (2005) Fungicidal and insecticidal activity of O-acyl chitosan derivatives. Polym Bull 54:279–289

  24. Bae T-H, Tak T-M (2005) Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J Membr Sci 249:1–8. doi:10.1016/j.memsci.2004.09.008

  25. Bahnemann D (2004) Photocatalytic water treatment: solar energy applications. Sol Energy 77:445–459

  26. Baik JM, Kim MH, Larson C, Yavuz CT, Stucky GD, Wodtke AM, Moskovits M (2009) Pd-sensitized single vanadium oxide nanowires: highly responsive hydrogen sensing based on the metal-insulator transition. Nano Lett 9:3980–3984. doi:10.1021/nl902020t

  27. Balamurugan R, Sundarrajan S, Ramakrishna S (2011) Recent trends in nanofibrous membranes and their suitability for air and water filtrations. Membranes 1:232–248

  28. Balta S, Sotto A, Luis P, Benea L, Van der Bruggen B, Kim J (2012) A new outlook on membrane enhancement with nanoparticles: the alternative of ZnO. J Membr Sci 389:155–161. doi:10.1016/j.memsci.2011.10.025

  29. Baltrusaitis J, Jayaweera PM, Grassian VH (2011) Sulfur dioxide adsorption on TiO2 nanoparticles: influence of particle size, coadsorbates, sample pretreatment, and light on surface speciation and surface coverage. J Phys Chem C 115:492–500. doi:10.1021/jp108759b

  30. Banerjee S, Pillai SC, Falaras P, O’Shea KE, Byrne JA, Dionysiou DD (2014) New insights into the mechanism of visible light photocatalysis. J Phys Chem Lett 5:2543–2554. doi:10.1021/jz501030x

  31. Baolong Z, Baishun C, Keyu S, Shangjin H, Xiaodong L, Zongjie D, Kelian Y (2003) Preparation and characterization of nanocrystal grain TiO2 porous microspheres. Appl Catal B Environ 40:253–258. doi:10.1016/S0926-3373(02)00083-8

  32. Bayen S, Wurl O, Karuppiah S, Sivasothi N, Lee HK, Obbard JP (2005) Persistent organic pollutants in mangrove food webs in Singapore. Chemosphere 61:303–313

  33. Bazrafshan E, Mostafapour FK, Hosseini AR, Raksh Khorshid A, Mahvi AH (2012) Decolorisation of reactive red 120 dye by using single-walled carbon nanotubes in aqueous solutions. J Chem 2013:8. doi:10.1155/2013/938374

  34. Beheshtian J, Baei MT, Bagheri Z, Peyghan AA (2012) AIN nanotube as a potential electronic sensor for nitrogen dioxide. Microelectron J 43:452–455. doi:10.1016/j.mejo.2012.04.002

  35. Berger T, Diwald O, Knözinger E, Sterrer M, Yates JT Jr (2006) UV induced local heating effects in TiO2 nanocrystals. Phys Chem Chem Phys 8:1822–1826

  36. Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48:4638–4663

  37. Bjørkøy A, Fiksdal L (2009) Characterization of biofouling on hollow fiber membranes using confocal laser scanning microscopy and image analysis. Desalination 245:474–484. doi:10.1016/j.desal.2009.02.011

  38. Bolan N et al (2014) Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize? J Hazard Mater 266:141–166. doi:10.1016/j.jhazmat.2013.12.018

  39. Bottino A, Capannelli G, D’Asti V, Piaggio P (2001) Preparation and properties of novel organic–inorganic porous membranes. Sep Purif Technol 22–23:269–275. doi:10.1016/S1383-5866(00)00127-1

  40. Bottino A, Capannelli G, Comite A (2002) Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination 146:35–40. doi:10.1016/S0011-9164(02)00469-1

  41. Brame J, Li Q, Alvarez PJJ (2011) Nanotechnology-enabled water treatment and reuse: emerging opportunities and challenges for developing countries. Trends Food Sci Technol 22:618–624. doi:10.1016/j.tifs.2011.01.004

  42. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870. doi:10.1021/nl052326h

  43. Buonomenna MG (2013) Membrane processes for a sustainable industrial growth. RSC Advances 3:5694–5740. doi:10.1039/C2RA22580H

  44. Bystrzejewski M, Pyrzyńska K (2011) Kinetics of copper ions sorption onto activated carbon, carbon nanotubes and carbon-encapsulated magnetic nanoparticles. Colloids Surf A Physicochem Eng Asp 377:402–408. doi:10.1016/j.colsurfa.2011.01.041

  45. Bystrzejewski M, Pyrzyńska K, Huczko A, Lange H (2009) Carbon-encapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions. Carbon 47:1201–1204. doi:10.1016/j.carbon.2009.01.007

  46. Cai N, Larese-Casanova P (2014) Sorption of carbamazepine by commercial graphene oxides: a comparative study with granular activated carbon and multiwalled carbon nanotubes. J Colloid Interface Sci 426:152–161. doi:10.1016/j.jcis.2014.03.038

  47. Cao X, Ma J, Shi X, Ren Z (2006) Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl Surf Sci 253:2003–2010. doi:10.1016/j.apsusc.2006.03.090

  48. Caratto V, Setti L, Campodonico S, Carnasciali M, Botter R, Ferretti M (2012) Synthesis and characterization of nitrogen-doped TiO2 nanoparticles prepared by sol–gel method. J Sol-Gel Sci Technol 63:16–22

  49. Celebioglu A, Sen HS, Durgun E, Uyar T (2016) Molecular entrapment of volatile organic compounds (VOCs) by electrospun cyclodextrin nanofibers. Chemosphere 144:736–744. doi:10.1016/j.chemosphere.2015.09.029

  50. Chang C-F, Chang C-Y, Hsu T-L (2011) Removal of fluoride from aqueous solution with the superparamagnetic zirconia material. Desalination 279:375–382. doi:10.1016/j.desal.2011.06.039

  51. Chávez F et al (2013) Sensing performance of palladium-functionalized WO3 nanowires by a drop-casting method. Appl Surf Sci 275:28–35. doi:10.1016/j.apsusc.2013.01.145

  52. Chen S-S, Hsu H-D, Li C-W (2004) A new method to produce nanoscale iron for nitrate removal. J Nanoparticle Res 6:639–647

  53. Chen C, Hu J, Shao D, Li J, Wang X (2009a) Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J Hazard Mater 164:923–928. doi:10.1016/j.jhazmat.2008.08.089

  54. Chen G-C et al (2009b) Adsorption of 2,4,6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu(II). Water Res 43:2409–2418. doi:10.1016/j.watres.2009.03.002

  55. Chen G-C, Shan X-Q, Pei Z-G, Wang H, Zheng L-R, Zhang J, Xie Y-N (2011a) Adsorption of diuron and dichlobenil on multiwalled carbon nanotubes as affected by lead. J Hazard Mater 188:156–163. doi:10.1016/j.jhazmat.2011.01.095

  56. Chen Y et al (2011b) Electronic detection of lectins using carbohydrate-functionalized nanostructures: graphene versus carbon nanotubes. ACS Nano 6:760–770

  57. Chen Z, Pierre D, He H, Tan S, Pham-Huy C, Hong H, Huang J (2011c) Adsorption behavior of epirubicin hydrochloride on carboxylated carbon nanotubes. Int J Pharm 405:153–161. doi:10.1016/j.ijpharm.2010.11.034

  58. Cheung O, Bacsik Z, Liu Q, Mace A, Hedin N (2013) Adsorption kinetics for CO2 on highly selective zeolites NaKA and nano-NaKA. Appl Energy 112:1326–1336. doi:10.1016/j.apenergy.2013.01.017

  59. Chin SS, Chiang K, Fane AG (2006) The stability of polymeric membranes in a TiO2 photocatalysis process. J Membr Sci 275:202–211. doi:10.1016/j.memsci.2005.09.033

  60. Chirkov S (2002) The antiviral activity of chitosan (review). Appl Biochem Microbiol 38:1–8

  61. Cho M, Chung H, Choi W, Yoon J (2005) Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl Environ Microbiol 71:270–275

  62. Cho H-H, Huang H, Schwab K (2011) Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes. Langmuir 27:12960–12967. doi:10.1021/la202459g

  63. Choi H, Stathatos E, Dionysiou DD (2006a) Sol–gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Appl Catal B Environ 63:60–67. doi:10.1016/j.apcatb.2005.09.012

  64. Choi J-H, Jegal J, Kim W-N (2006b) Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J Membr Sci 284:406–415. doi:10.1016/j.memsci.2006.08.013

  65. Choi H, Al-Abed SR, Dionysiou DD, Stathatos E, Lianos P (2010) Chapter 8 TiO2-based advanced oxidation nanotechnologies for water purification and reuse. In: Isabel CE, Andrea IS (eds) Sustainability science and engineering, vol 2. Elsevier, pp 229–254. doi:10.1016/S1871-2711(09)00208-6

  66. Choi H, Zakersalehi A, Al-Abed SR, Han C, Dionysiou DD (2014) Chapter 8—nanostructured titanium oxide film- and membrane-based photocatalysis for water treatment. In: Savage ASSD (ed) Nanotechnology applications for clean water, 2nd edn. William Andrew Publishing, Oxford, pp 123–132. doi:10.1016/B978-1-4557-3116-9.00008-1

  67. Chong MNJB, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027. doi:10.1016/j.watres.2010.02.039

  68. Chowdhury SR, Yanful EK (2013) Kinetics of cadmium(II) uptake by mixed maghemite-magnetite nanoparticles. J Environ Manag 129:642–651. doi:10.1016/j.jenvman.2013.08.028

  69. Chronopoulos D, Karousis N, Zhao S, Wang Q, Shinohara H, Tagmatarchis N (2014) Photocatalytic application of nanosized CdS immobilized onto functionalized MWCNTs. Dalton Trans 43:7429–7434

  70. Chrysochoou M, Johnston CP, Dahal G (2012) A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron. J Hazard Mater 201–202:33–42. doi:10.1016/j.jhazmat.2011.11.003

  71. Chung T-S, Li X, Ong RC, Ge Q, Wang H, Han G (2012) Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications. Curr Opin Chem Eng 1:246–257

  72. Ciston S, Lueptow RM, Gray KA (2009) Controlling biofilm growth using reactive ceramic ultrafiltration membranes. J Membr Sci 342:263–268. doi:10.1016/j.memsci.2009.06.049

  73. Cloete TE (2010) Nanotechnology in water treatment applications. Horizon Scientific Press, New York

  74. Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D (2008) Advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol 83:769–776

  75. Cong Y, Zhang J, Chen F, Anpo M (2007) Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J Phys Chem C 111:6976–6982

  76. Cornelissen E, Harmsen D, De Korte K, Ruiken C, Qin J-J, Oo H, Wessels L (2008) Membrane fouling and process performance of forward osmosis membranes on activated sludge. J Membr Sci 319:158–168

  77. Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125. doi:10.1016/j.jhazmat.2011.11.073

  78. Cui Y, Liu L, Li B, Zhou X, Xu N (2010) Fabrication of tunable core–shell structured TiO2 mesoporous microspheres using linear polymer polyethylene glycol as templates. J Phys Chem C 114:2434–2439

  79. Cui Y, Kim SN, Naik RR, McAlpine MC (2012a) Biomimetic peptide nanosensors. Acc Chem Res 45:696–704

  80. Cui H, Li Q, Gao S, Shang JK (2012b) Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. J Ind Eng Chem 18:1418–1427. doi:10.1016/j.jiec.2012.01.045

  81. Daly AaPZ (2007) An introduction to air pollution—definitions, classifications, and history. In: Zannetti P, Al-Ajmi D, Al-Rashied S (ed) Ambient air pollution. The Arab School for Science and Technology (ASST) (http://www.arabschool.org.sy) and The EnviroComp Institute (http://www.envirocomp.org/)

  82. Daraei P, Madaeni SS, Ghaemi N, Khadivi MA, Astinchap B, Moradian R (2013) Enhancing antifouling capability of PES membrane via mixing with various types of polymer modified multi-walled carbon nanotube. J Membr Sci 444:184–191. doi:10.1016/j.memsci.2013.05.020

  83. De Gusseme B et al (2011) Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes. Water Res 45:1856–1864. doi:10.1016/j.watres.2010.11.046

  84. De Laat J, Le GT, Legube B (2004) A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe (II)/H2O2 and Fe (III)/H2O2. Chemosphere 55:715–723

  85. Deng J, Shao Y, Gao N, Deng Y, Tan C, Zhou S, Hu X (2012) Multiwalled carbon nanotubes as adsorbents for removal of herbicide diuron from aqueous solution. Chem Eng J 193–194:339–347. doi:10.1016/j.cej.2012.04.051

  86. Di Francia G, Alfano B, La Ferrara V (2009) Conductometric gas nanosensors. J Sens. doi:10.1155/2009/659275

  87. Dimitroula H, Daskalaki VM, Frontistis Z, Kondarides DI, Panagiotopoulou P, Xekoukoulotakis NP, Mantzavinos D (2012) Solar photocatalysis for the abatement of emerging micro-contaminants in wastewater: synthesis, characterization and testing of various TiO2 samples. Appl Catal B Environ 117:283–291. doi:10.1016/j.apcatb.2012.01.024

  88. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284. doi:10.1016/j.msec.2014.08.031

  89. Dizaj SM, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5–19

  90. Dong F, Zhao W, Wu Z (2008) Characterization and photocatalytic activities of C, N and S co-doped TiO2 with 1D nanostructure prepared by the nano-confinement effect. Nanotechnology 19:365607

  91. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24

  92. Ebert K, Fritsch D, Koll J, Tjahjawiguna C (2004) Influence of inorganic fillers on the compaction behaviour of porous polymer based membranes. J Membr Sci 233:71–78. doi:10.1016/j.memsci.2003.12.012

  93. El-Temsah YS, Joner EJ (2013) Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. Chemosphere 92:131–137. doi:10.1016/j.chemosphere.2013.02.039

  94. Engates K, Shipley H (2011) Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ Sci Pollut Res 18:386–395. doi:10.1007/s11356-010-0382-3

  95. Fagan R, McCormack DE, Dionysiou DD, Pillai SC (2016) A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater Sci Semicond Process 42(Part1):2–14. doi:10.1016/j.mssp.2015.07.052

  96. Fang J, Lyon DY, Wiesner MR, Dong J, Alvarez (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41:2636–2642. doi:10.1021/es062181w

  97. Fang Z, Qiu X, Chen J, Qiu X (2011a) Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: influencing factors, kinetics, and mechanism. J Hazard Mater 185:958–969

  98. Fang Z, Qiu X, Chen J, Qiu X (2011b) Degradation of the polybrominated diphenyl ethers by nanoscale zero-valent metallic particles prepared from steel pickling waste liquor. Desalination 267:34–41

  99. Fathizadeh M, Aroujalian A, Raisi A (2011) Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. J Membr Sci 375:88–95. doi:10.1016/j.memsci.2011.03.017

  100. Feng L, Cao M, Ma X, Zhu Y, Hu C (2012) Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J Hazard Mater 217–218:439–446. doi:10.1016/j.jhazmat.2012.03.073

  101. Feng L, Zhu A, Wang H, Shi H (2014) A nanosensor based on quantum-dot haptens for rapid, on-site immunoassay of cyanotoxin in environmental water. Biosens Bioelectron 53:1–4. doi:10.1016/j.bios.2013.09.018

  102. Fereidoun H, Nourddin MS, Rreza NA, Mohsen A, Ahmad R, Pouria H (2007) The effect of long-term exposure to particulate pollution on the lung function of Teheranian and Zanjanian students Pakistan. J Physiol 3:1–5

  103. Fotiou T, Triantis TM, Kaloudis T, O’Shea KE, Dionysiou DD, Hiskia A (2016) Assessment of the roles of reactive oxygen species in the UV and visible light photocatalytic degradation of cyanotoxins and water taste and odor compounds using C–TiO2. Water Res 90:52–61. doi:10.1016/j.watres.2015.12.006

  104. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21. doi:10.1016/S1389-5567(00)00002-2

  105. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582. doi:10.1016/j.surfrep.2008.10.001

  106. Gao H, Zhao S, Cheng X, Wang X, Zheng L (2013) Removal of anionic azo dyes from aqueous solution using magnetic polymer multi-wall carbon nanotube nanocomposite as adsorbent. Chem Eng J 223:84–90. doi:10.1016/j.cej.2013.03.004

  107. Gaya UI, Abdullah AH (2008a) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C: Photochem Rev 9:1–12

  108. Gaya UI, Abdullah AH (2008b) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C: Photochem Rev 9:1–12. doi:10.1016/j.jphotochemrev.2007.12.003

  109. Ge Q, Su J, Chung T-S, Amy G (2010) Hydrophilic superparamagnetic nanoparticles: synthesis, characterization, and performance in forward osmosis processes. Ind Eng Chem Res 50:382–388. doi:10.1021/ie101013w

  110. Ge F, Li M-M, Ye H, Zhao B-X (2012) Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J Hazard Mater 211–212:366–372. doi:10.1016/j.jhazmat.2011.12.013

  111. Gerez V, Rondano K, Pasquali C (2014) A simple manifold flow injection analysis for determining phosphorus in the presence of arsenate. J Water Chem Technol 36:19–24

  112. Geyikçi F (2013) Adsorption of acid blue 161 (AB 161) dye from water by multi-walled carbon nanotubes. Fullerenes Nanotubes Carbon Nanostruct 21:579–593. doi:10.1080/1536383X.2011.643428

  113. Ghaedi M, Kokhdan SN (2012) Oxidized multiwalled carbon nanotubes for the removal of methyl red (MR): kinetics and equilibrium study. Desalin Water Treat 49:317–325. doi:10.1080/19443994.2012.719355

  114. Ghaedi M, Hassanzadeh A, Kokhdan SN (2011) Multiwalled carbon nanotubes as adsorbents for the kinetic and equilibrium study of the removal of alizarin red S and morin. J Chem Eng Data 56:2511–2520. doi:10.1021/je2000414

  115. Ghenaatian HR, Baei MT, Hashemian S (2013) Zn12O12 nano-cage as a promising adsorbent for CS2 capture. Superlattice Microst 58:198–204. doi:10.1016/j.spmi.2013.03.006

  116. Glover TG, Sabo D, Vaughan LA, Rossin JA, Zhang ZJ (2012) Adsorption of sulfur dioxide by CoFe2O4 spinel ferrite nanoparticles and corresponding changes in magnetism. Langmuir 28:5695–5702. doi:10.1021/la3003417

  117. Goi A, Trapido M (2002) Hydrogen peroxide photolysis, Fenton reagent and photo-Fenton for the degradation of nitrophenols: a comparative study. Chemosphere 46:913–922

  118. Gong J-L et al (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164:1517–1522. doi:10.1016/j.jhazmat.2008.09.072

  119. Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T (2006) Electrospun nanofibrous filtration membrane. J Membr Sci 281:581–586

  120. Gopal R, Kaur S, Feng CY, Chan C, Ramakrishna S, Tabe S, Matsuura T (2007) Electrospun nanofibrous polysulfone membranes as pre-filters: particulate removal. J Membr Sci 289:210–219

  121. Gordon T, Perlstein B, Houbara O, Felner I, Banin E, Margel S (2011) Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf A Physicochem Eng Asp 374:1–8. doi:10.1016/j.colsurfa.2010.10.015

  122. Govindhan M, Adhikari B-R, Chen A (2014) Nanomaterials-based electrochemical detection of chemical contaminants. RSC Adv 4:63741–63760. doi:10.1039/C4RA10399H

  123. Goyal D, Durga G, Mishra A (2013) CHAPTER 7 Nanomaterials for water remediation. In: Green materials for sustainable water remediation and treatment. The Royal Society of Chemistry, pp 135–154. doi:10.1039/9781849735001-00135

  124. Gray SR, Ritchie CB, Tran T, Bolto BA, Greenwood P, Busetti F, Allpike B (2008) Effect of membrane character and solution chemistry on microfiltration performance. Water Res 42:743–753. doi:10.1016/j.watres.2007.08.005

  125. Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P (2009) Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res 43:2317–2348. doi:10.1016/j.watres.2009.03.010

  126. Gupta VK, Agarwal S, Saleh TA (2011) Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res 45:2207–2212. doi:10.1016/j.watres.2011.01.012

  127. Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA (2013) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Colloid Interf Sci 193–194:24–34. doi:10.1016/j.cis.2013.03.003

  128. Hahn MA, Tabb JS, Krauss TD (2005) Detection of single bacterial pathogens with semiconductor quantum dots. Anal Chem 77:4861–4869

  129. Han R, Zou W, Li H, Li Y, Shi J (2006) Copper(II) and lead(II) removal from aqueous solution in fixed-bed columns by manganese oxide coated zeolite. J Hazard Mater 137:934–942. doi:10.1016/j.jhazmat.2006.03.016

  130. Han C et al (2013) A multiwalled‐carbon‐nanotube‐based biosensor for monitoring microcystin‐LR in sources of drinking water supplies. Adv Funct Mater 23:1807–1816

  131. Hao Y-M, Man C, Hu Z-B (2010) Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. J Hazard Mater 184:392–399. doi:10.1016/j.jhazmat.2010.08.048

  132. Haseley SR (2002) Carbohydrate recognition: a nascent technology for the detection of bioanalytes. Anal Chim Acta 457:39–45

  133. Hauptmann MLJ, Stewart PA, Hayes RB, Blair A (2004) Mortality from solid cancers among workers in formaldehyde industries. Am J Epidemiol 15:1117–1130

  134. He F, Zhao D (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39:3314–3320

  135. He F, Zhao D (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41:6216–6221

  136. He M, Shi H, Zhao X, Yu Y, Qu B (2013) Immobilization of Pb and Cd in contaminated soil using nano-crystallite hydroxyapatite. Procedia Environ Sci 18:657–665. doi:10.1016/j.proenv.2013.04.090

  137. He X, Aker WG, Pelaez M, Lin Y, Dionysiou DD, Hwang H-m (2016) Assessment of nitrogen–fluorine-codoped TiO2 under visible light for degradation of BPA: implication for field remediation. J Photochem Photobiol A Chem 314:81–92. doi:10.1016/j.jphotochem.2015.08.014

  138. Herzberg M, Elimelech M (2007) Biofouling of reverse osmosis membranes: role of biofilm-enhanced osmotic pressure. J Membr Sci 295:11–20. doi:10.1016/j.memsci.2007.02.024

  139. Holappa J et al (2006) Antimicrobial activity of chitosan N-betainates. Carbohydr Polym 65:114–118. doi:10.1016/j.carbpol.2005.11.041

  140. Holloway RW, Childress AE, Dennett KE, Cath TY (2007) Forward osmosis for concentration of anaerobic digester centrate. Water Res 41:4005–4014. doi:10.1016/j.watres.2007.05.054

  141. Homola J (2006) Surface plasmon resonance (SPR) sensors pp 45–67. Springer, London

  142. Hossain F, Perales-Perez OJ, Hwang S, Román F (2014) Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci Total Environ 466–467:1047–1059. doi:10.1016/j.scitotenv.2013.08.009

  143. Hotze M, Lowry G (2011) Nanotechnology for sustainable water treatment. In: Sustainable water. The Royal Society of Chemistry, pp 138–164. doi:10.1039/9781849732253-00138

  144. Houde M et al (2008) Influence of lake characteristics on the biomagnification of persistent organic pollutants in lake trout food webs. Environ Toxicol Chem 27:2169–2178. doi:10.1897/08-071.1

  145. Hu J, Shipley HJ (2012) Evaluation of desorption of Pb (II), Cu (II) and Zn (II) from titanium dioxide nanoparticles. Sci Total Environ 431:209–220. doi:10.1016/j.scitotenv.2012.05.039

  146. Huang Z, Maness P-C, Blake DM, Wolfrum EJ, Smolinski SL, Jacoby WA (2000) Bactericidal mode of titanium dioxide photocatalysis. J Photochem Photobiol A Chem 130:163–170

  147. Huang Z et al (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24:4140–4144. doi:10.1021/la7035949

  148. Huang J, Cao Y, Liu Z, Deng Z, Tang F, Wang W (2012) Efficient removal of heavy metal ions from water system by titanate nanoflowers. Chem Eng J 180:75–80. doi:10.1016/j.cej.2011.11.005

  149. Hussain M, Ceccarelli R, Marchisio DL, Fino D, Russo N, Geobaldo F (2010) Synthesis, characterization, and photocatalytic application of novel TiO2 nanoparticles. Chem Eng J 157:45–51. doi:10.1016/j.cej.2009.10.043

  150. Hussein AK (2015) Applications of nanotechnology in renewable energies—a comprehensive overview and understanding. Renew Sust Energ Rev 42:460–476. doi:10.1016/j.rser.2014.10.027

  151. Hwang GB, Lee JE, Nho CW, Lee BU, Lee SJ, Jung JH, Bae G-N (2012) Short-term effect of humid airflow on antimicrobial air filters using Sophora flavescens nanoparticles. Sci Total Environ 421–422:273–279. doi:10.1016/j.scitotenv.2012.01.060

  152. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

  153. Ishibashi M, Izumi Y, Sakai M, Ando T, Fukusaki E, Bamba T (2015) High-Throughput simultaneous analysis of pesticides by supercritical fluid chromatography coupled with high-resolution mass spectrometry. J Agric Food Chem 63:4457–4463. doi:10.1021/jf5056248

  154. Jafari M, Aghamiri S (2011) Evaluation of carbon nanotubes as solid-phase extraction sorbent for the removal of cephalexin from aqueous solution. Desalin Water Treat 28:55–58

  155. Jana S, Mitra BC, Bera P, Sikdar M, Mondal A (2014) Photocatalytic activity of galvanically synthesized nanostructure SnO2 thin films. J Alloys Compd 602:42–48. doi:10.1016/j.jallcom.2014.02.182

  156. Jänchen J, Möhlmann DTF, Stach H (2007) Water and carbon dioxide sorption properties of natural zeolites and clay minerals at martian surface temperature and pressure conditions. In: Ruren Xu ZGJC, Wenfu Y (eds) Studies in surface science and catalysis, vol 170. Elsevier, New York, pp 2116–2121. doi:10.1016/S0167-2991(07)81108-6

  157. Jeong B-H et al (2007) Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J Membr Sci 294:1–7. doi:10.1016/j.memsci.2007.02.025

  158. Ji L, Chen W, Duan L, Zhu D (2009) Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environ Sci Technol 43:2322–2327. doi:10.1021/es803268b

  159. Ji L, Chen W, Bi J, Zheng S, Xu Z, Zhu D, Alvarez PJ (2010) Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ Toxicol Chem 29:2713–2719. doi:10.1002/etc.350

  160. Jiang D, Zhang S, Zhao H (2007) Photocatalytic degradation characteristics of different organic compounds at TiO2 nanoporous film electrodes with mixed anatase/rutile phases. Environ Sci Technol 41:303–308

  161. Jin T, He Y (2011) Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J Nanoparticle Res 13:6877–6885. doi:10.1007/s11051-011-0595-5

  162. Jin LM, Yu SL, Shi WX, Yi XS, Sun N, Ge YL, Ma C (2012) Synthesis of a novel composite nanofiltration membrane incorporated SiO2 nanoparticles for oily wastewater desalination. Polymer 53:5295–5303. doi:10.1016/j.polymer.2012.09.014

  163. Jing Y, Li L, Zhang Q, Lu P, Liu P, Lü X (2011) Photocatalytic ozonation of dimethyl phthalate with TiO 2 prepared by a hydrothermal method. J Hazard Mater 189:40–47

  164. Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76. doi:10.1111/j.1574-6968.2007.01012.x

  165. Joo JB, Lee I, Dahl M, Moon GD, Zaera F, Yin Y (2013) Controllable synthesis of mesoporous TiO2 hollow shells: toward an efficient photocatalyst. Adv Funct Mater 23:4246–4254

  166. Jung JHHG, Lee JE, Bae GN (2011) Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Langmuir 27:10256–10264

  167. Jung JH, Lee JE, Bae G-N (2013) Use of electrosprayed Sophora flavescens natural-product nanoparticles for antimicrobial air filtration. J Aerosol Sci 57:185–193. doi:10.1016/j.jaerosci.2012.09.004

  168. Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45:3902–3908. doi:10.1021/es1041892

  169. Kalele SA, Kundu AA, Gosavi SW, Deobagkar DN, Deobagkar DD, Kulkarni SK (2006) Rapid detection of escherichia coli by using antibody‐conjugated silver nanoshells. Small 2:335–338

  170. Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367. doi:10.1016/j.envpol.2007.06.012

  171. Kanade K, Kale B, Baeg J-O, Lee SM, Lee CW, Moon S-J, Chang H (2007) Self-assembled aligned Cu doped ZnO nanoparticles for photocatalytic hydrogen production under visible light irradiation. Mater Chem Phys 102:98–104

  172. Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673. doi:10.1021/la701067r

  173. Kang S, Mauter MS, Elimelech M (2009) Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ Sci Technol 43:2648–2653. doi:10.1021/es8031506

  174. Karci A (2014) Degradation of chlorophenols and alkylphenol ethoxylates, two representative textile chemicals, in water by advanced oxidation processes: the state of the art on transformation products and toxicity. Chemosphere 99:1–18. doi:10.1016/j.chemosphere.2013.10.034

  175. Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117:1823–1831

  176. Kaur J, Singhal S (2014) Facile synthesis of ZnO and transition metal doped ZnO nanoparticles for the photocatalytic degradation of Methyl Orange. Ceram Int 40:7417–7424

  177. Kaur S, Kotaki M, Ma Z, Gopal R, Ramakrishna S, Sc N (2006) Oligosaccharide functionalized nanofibrous membrane. Int J Nanosci 05:1–11. doi:10.1142/S0219581X06004206

  178. Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FAPC (2007) Food web-specific biomagnification of persistent organic pollutants. Science 317:236–239. doi:10.1126/science.1138275

  179. Khajeh M, Laurent S, Dastafkan K (2013) Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem Rev 113:7728–7768

  180. Khan TA, Nazir M, Ali I, Kumar A (2013) Removal of Chromium(VI) from aqueous solution using guar gum–nano zinc oxide biocomposite adsorbent. Arab J Chem. doi:10.1016/j.arabjc.2013.08.019

  181. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

  182. Kilianová M et al (2013) Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment. Chemosphere 93:2690–2697. doi:10.1016/j.chemosphere.2013.08.071

  183. Kim SH, Kwak S-Y, Sohn B-H, Park TH (2003) Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J Membr Sci 211:157–165. doi:10.1016/S0376-7388(02)00418-0

  184. Kim S, Hwang S-J, Choi W (2005) Visible light active platinum-ion-doped TiO2 photocatalyst. J Phys Chem B 109:24260–24267

  185. Kim J, Cho I, Kim I, Kim C, Heo NH, Suh S (2006) Manufacturing of anti-viral inorganic materials from colloidal silver and titanium oxide. Rev Roum Chim 51:1121

  186. Kiparissides C, Kammona O (2015) Nanotechnology advances in diagnostics, drug delivery, and regenerative medicine. The nano-micro interface: bridging the micro and nano worlds 8:311–340. books.google.com

  187. Kočí K, Krejčíková S, Šolcová O, Obalová L (2012) Photocatalytic decomposition of N2O on Ag-TiO2. Catal Today 191:134–137. doi:10.1016/j.cattod.2012.01.021

  188. Komvokis VG, Marti M, Delimitis A, Vasalos IA, Triantafyllidis KS (2011) Catalytic decomposition of N2O over highly active supported Ru nanoparticles (≤3 nm) prepared by chemical reduction with ethylene glycol. Appl Catal B Environ 103:62–71. doi:10.1016/j.apcatb.2011.01.009

  189. Koneswaran M, Narayanaswamy R (2009) l-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sensors Actuators B Chem 139:104–109. doi:10.1016/j.snb.2008.09.028

  190. Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63. doi:10.1016/j.ijfoodmicro.2010.09.012

  191. Kosa SA, Al-Zhrani G, Abdel Salam M (2012) Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chem Eng J 181–182:159–168. doi:10.1016/j.cej.2011.11.044

  192. Koutsopoulos S, Johannessen T, Eriksen KM, Fehrmann R (2006) Titania-supported Pt and Pt–Pd nanoparticle catalysts for the oxidation of sulfur dioxide. J Catal 238:206–213

  193. Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A (2007) High-performance carbon nanotube fiber. Science 318:1892–1895. doi:10.1126/science.1147635

  194. Krishna V, Noguchi N, Koopman B, Moudgil B (2006) Enhancement of titanium dioxide photocatalysis by water-soluble fullerenes. J Colloid Interface Sci 304:166–171. doi:10.1016/j.jcis.2006.08.041

  195. Kudo T, Nakamura Y, Ruike A (2003) Development of rectangular column structured titanium oxide photocatalysts anchored on silica sheets by a wet process. Res Chem Intermed 29:631–639

  196. Kumar B, Mukherjee D, Kumar S, Mishra M, Prakash D, Singh S, Sharma C (2011) Bioaccumulation of heavy metals in muscle tissue of fishes from selected aquaculture ponds in east Kolkata wetlands. Ann Biol Res 2:125–134

  197. Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manag 28:215–225. doi:10.1016/j.wasman.2006.12.012

  198. Kuo C-Y, Wu C-H, Wu J-Y (2008) Adsorption of direct dyes from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetics and thermodynamics parameters. J Colloid Interface Sci 327:308–315. doi:10.1016/j.jcis.2008.08.038

  199. Kurniawan TASM, Sillanpää M (2011) Nanoadsorbents for remediation of aquatic environment: local and practical solutions for global water pollution problems. Crit Rev Environ Sci Technol 42:1233–1295

  200. Lam CWJJ, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134

  201. Lee N, Amy G, Croué J-P, Buisson H (2004) Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM). Water Res 38:4511–4523. doi:10.1016/j.watres.2004.08.013

  202. Lee SY, Kim HJ, Patel R, Im SJ, Kim JH, Min BR (2007) Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties. Polym Adv Technol 18:562–568. doi:10.1002/pat.918

  203. Lee BUYS, Ji JH, Bae GN (2008a) Inactivation of S. epidermidis, B. subtilis, and E. coli bacteria bioaerosols deposited on a filter utilizing airborne silver nanoparticles. J Microbiol Biotechnol 18:176–182

  204. Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008b) Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42:4927–4933. doi:10.1021/es800408u

  205. Lee BUYS, Jung JH, Bae GN (2010a) Effect of relative humidity and variation of particle number size distribution on the inactivation effectiveness of airborne silver nanoparticles against bacteria bioaerosols deposited on a filter. J Aerosol Sci 41:447–456

  206. Lee KJ, Shiratori N, Lee GH, Miyawaki J, Mochida I, Yoon S-H, Jang J (2010b) Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent. Carbon 48:4248–4255. doi:10.1016/j.carbon.2010.07.034

  207. Lee KP, Arnot TC, Mattia D (2011) A review of reverse osmosis membrane materials for desalination—development to date and future potential. J Membr Sci 370:1–22

  208. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170. doi:10.1002/adma.200400719

  209. Li Y-H et al (2003a) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41:2787–2792. doi:10.1016/S0008-6223(03)00392-0

  210. Li Y-H, Wang S, Luan Z, Ding J, Xu C, Wu D (2003b) Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41:1057–1062. doi:10.1016/S0008-6223(02)00440-2

  211. Li H, Zhang Y, Wang X, Gao Z (2008a) A luminescent nanosensor for Hg (II) based on functionalized CdSe/ZnS quantum dots. Microchim Acta 160:119–123

  212. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008b) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602. doi:10.1016/j.watres.2008.08.015

  213. Li T, Shi L, Wang E, Dong S (2009) Multifunctional G‐quadruplex aptamers and their application to protein detection. Chem Eur J 15:1036–1042

  214. Li J-h, Hong R-y, Luo G-h, Zheng Y, Li H-z, Wei D-g (2010) An easy approach to encapsulating Fe3O4 nanoparticles in multiwalled carbon nanotubes. New Carbon Mater 25:192–198. doi:10.1016/S1872-5805(09)60026-3

  215. Li X et al (2013) Efficient adsorption of gold ions from aqueous systems with thioamide-group chelating nanofiber membranes. Chem Eng J 229:420–428. doi:10.1016/j.cej.2013.06.022

  216. Li H, Zhang D, Han X, Xing B (2014a) Adsorption of antibiotic ciprofloxacin on carbon nanotubes: pH dependence and thermodynamics. Chemosphere 95:150–155

  217. Li X et al (2014b) Self-assembly of TiO2 nanoparticles around the pores of PES ultrafiltration membrane for mitigating organic fouling. J Membr Sci 467:226–235. doi:10.1016/j.memsci.2014.05.036

  218. Liang Q, Zhao D (2014) Immobilization of arsenate in a sandy loam soil using starch-stabilized magnetite nanoparticles. J Hazard Mater 271:16–23. doi:10.1016/j.jhazmat.2014.01.055

  219. Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25:279–283. doi:10.1046/j.1472-765X.1997.00219.x

  220. Likodimos V et al (2013) Anion-doped TiO2 nanocatalysts for water purification under visible light. Ind Eng Chem Res 52:13957–13964. doi:10.1021/ie3034575

  221. Lin D, Xing B (2008) Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environ Sci Technol 42:7254–7259. doi:10.1021/es801297u

  222. Lin Y-H, Tseng T-K, Chu H (2014) Photo-catalytic degradation of dimethyl disulfide on S and metal-ions co-doped TiO2 under visible-light irradiation. Appl Catal A Gen 469:221–228. doi:10.1016/j.apcata.2013.10.006

  223. Lind ML, Ghosh AK, Jawor A, Huang X, Hou W, Yang Y, Hoek EMV (2009) Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes. Langmuir 25:10139–10145. doi:10.1021/la900938x

  224. Lithoxoos GP, Labropoulos A, Peristeras LD, Kanellopoulos N, Samios J, Economou IG (2010) Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: a combined experimental and Monte Carlo molecular simulation study. J Supercrit Fluids 55:510–523. doi:10.1016/j.supflu.2010.09.017

  225. Liu R, Zhao D (2007a) In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles. Chemosphere 68:1867–1876. doi:10.1016/j.chemosphere.2007.03.010

  226. Liu R, Zhao D (2007b) Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Res 41:2491–2502. doi:10.1016/j.watres.2007.03.026

  227. Liu R, Zhao D (2013) Synthesis and characterization of a new class of stabilized apatite nanoparticles and applying the particles to in situ Pb immobilization in a fire-range soil. Chemosphere 91:594–601. doi:10.1016/j.chemosphere.2012.12.034

  228. Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A (1998) Fullerene pipes. Science 280:1253–1256

  229. Liu X, Su DS, Schlögl R (2008) Oxidative dehydrogenation of 1-butene to butadiene over carbon nanotube catalysts. Carbon 46:547–549. doi:10.1016/j.carbon.2007.12.014

  230. Liu S et al (2009) Sharper and faster “Nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3:3891–3902. doi:10.1021/nn901252r

  231. Liu Z, Bai H, Lee J, Sun DD (2011) A low-energy forward osmosis process to produce drinking water. Energy Environ Sci 4:2582–2585

  232. Liu G et al (2013a) Enhancement of visible-light-driven O-2 evolution from water oxidation on WO3 treated with hydrogen. J Catal 307:148–152. doi:10.1016/j.jcat.2013.06.024

  233. Liu W, Wang T, Borthwick AGL, Wang Y, Yin X, Li X, Ni J (2013b) Adsorption of Pb2+, Cd2+, Cu2+ and Cr3+ onto titanate nanotubes: competition and effect of inorganic ions. Sci Total Environ 456–457:171–180. doi:10.1016/j.scitotenv.2013.03.082

  234. Liu Y, Wang Z, Wang W, Huang W (2014) Engineering highly active TiO2 photocatalysts via the surface-phase junction strategy employing a titanate nanotube precursor. J Catal 310:16–23. doi:10.1016/j.jcat.2013.03.024

  235. Loeb S, Titelman L, Korngold E, Freiman J (1997) Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane. J Membr Sci 129:243–249

  236. Loos M (2015) Chapter 1—nanoscience and nanotechnology. In: Loos M (ed) Carbon nanotube reinforced composites. William Andrew Publishing, Oxford, pp 1–36. doi:10.1016/B978-1-4557-3195-4.00001-1

  237. Lu C, Chiu H (2006) Adsorption of zinc(II) from water with purified carbon nanotubes. Chem Eng Sci 61:1138–1145. doi:10.1016/j.ces.2005.08.007

  238. Lu C, Liu C (2006) Removal of nickel(II) from aqueous solution by carbon nanotubes. J Chem Technol Biotechnol 81:1932–1940. doi:10.1002/jctb.1626

  239. Lu C, Chiu H, Liu C (2006) Removal of zinc(II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind Eng Chem Res 45:2850–2855. doi:10.1021/ie051206h

  240. Lu SS, Chen L, Dong YH, Chen YX (2011) Adsorption of Eu(III) on iron oxide/multiwalled carbon nanotube magnetic composites. J Radioanal Nucl Chem 288:587–593

  241. Lunge S, Singh S, Sinha A (2014) Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J Magn Magn Mater 356:21–31. doi:10.1016/j.jmmm.2013.12.008

  242. Luo C, Wei R, Guo D, Zhang S, Yan S (2013a) Adsorption behavior of MnO2 functionalized multi-walled carbon nanotubes for the removal of cadmium from aqueous solutions. Chem Eng J 225:406–415. doi:10.1016/j.cej.2013.03.128

  243. Luo X, Wang C, Wang L, Deng F, Luo S, Tu X, Au C (2013b) Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As(III) and As(V) from water. Chem Eng J 220:98–106. doi:10.1016/j.cej.2013.01.017

  244. Lupan O, Chai G, Chow L (2008) Novel hydrogen gas sensor based on single ZnO nanorod. Microelectron Eng 85:2220–2225. doi:10.1016/j.mee.2008.06.021

  245. Lv X, Xu J, Jiang G, Xu X (2011) Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere 85:1204–1209. doi:10.1016/j.chemosphere.2011.09.005

  246. Lyon DY, Alvarez PJJ (2008) Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ Sci Technol 42:8127–8132. doi:10.1021/es801869m

  247. Lyon DY, Brunet L, Hinkal GW, Wiesner MR, Alvarez PJ (2008) Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage. Nano Lett 8:1539–1543

  248. Ma QY, Traina SJ, Logan TJ, Ryan JA (1993) In situ Pb immobilization by apatite. Environ Sci Technol 27:1803

  249. Ma Z, Kotaki M, Ramakrishna S (2005) Electrospun cellulose nanofiber as affinity membrane. J Membr Sci 265:115–123. doi:10.1016/j.memsci.2005.04.044

  250. Ma Q, Cui H, Su X (2009) Highly sensitive gaseous formaldehyde sensor with CdTe quantum dots multilayer films. Biosens Bioelectron 25:839–844. doi:10.1016/j.bios.2009.08.038

  251. Machado FM, Bergmann CP, Fernandes THM, Lima EC, Royer B, Calvete T, Fagan SB (2011) Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J Hazard Mater 192:1122–1131. doi:10.1016/j.jhazmat.2011.06.020

  252. Machado FM et al (2012) Adsorption of reactive blue 4 dye from water solutions by carbon nanotubes: experiment and theory. Phys Chem Chem Phys 14:11139–11153. doi:10.1039/C2CP41475A

  253. Madrakian T, Afkhami A, Ahmadi M, Bagheri H (2011) Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J Hazard Mater 196:109–114. doi:10.1016/j.jhazmat.2011.08.078

  254. Madrakian T, Afkhami A, Ahmadi M (2013) Simple in situ functionalizing magnetite nanoparticles by reactive blue-19 and their application to the effective removal of Pb2+ ions from water samples. Chemosphere 90:542–547. doi:10.1016/j.chemosphere.2012.08.025

  255. Maggini L et al (2013) Magnetic poly(vinylpyridine)-coated carbon nanotubes: an efficient supramolecular tool for wastewater purification. ChemSusChem 6:367–373. doi:10.1002/cssc.201200413

  256. Mahapatra A, Mishra BG, Hota G (2013) Electrospun Fe2O3–Al2O3 nanocomposite fibers as efficient adsorbent for removal of heavy metal ions from aqueous solution. J Hazard Mater 258–259:116–123. doi:10.1016/j.jhazmat.2013.04.045

  257. Mahendra S, Li Q, Lyon DY, Brunet L, Alvarez PJJ (2014) Chapter 20—nanotechnology-enabled water disinfection and microbial control: merits and limitations. In: Street A, Sustich R, Duncan J, Savage N (eds) Nanotechnology applications for clean water, 2nd edn. William Andrew Publishing, Oxford, pp 319–327. doi:10.1016/B978-1-4557-3116-9.00020-2

  258. Malato S, Fernandez-Ibanez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59. doi:10.1016/j.cattod.2009.06.018

  259. Malato S, Fernández-Ibáñez P, Maldonado MI, Oller I (2013) Chapter 15—solar photocatalytic processes: water decontamination and disinfection. In: Suib SL (ed) New and future developments in catalysis. Elsevier, Amsterdam, pp 371–393. doi:10.1016/B978-0-444-53872-7.00017-0

  260. Maldonado M, Passarinho P, Oller I, Gernjak W, Fernández P, Blanco J, Malato S (2007) Photocatalytic degradation of EU priority substances: a comparison between TiO 2 and Fenton plus photo-Fenton in a solar pilot plant. J Photochem Photobiol A Chem 185:354–363

  261. Mansoori GA, Soelaiman TF (2005) Nanotechnology—an introduction for the standards community. J ASTM Int 2:1–21

  262. Matsumura Y, Yoshikata K, Kunisaki S-i, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281

  263. Mauter MS, Wang Y, Okemgbo KC, Osuji CO, Giannelis EP, Elimelech M (2011) Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. ACS Appl Mater Interfaces 3:2861–2868. doi:10.1021/am200522v

  264. Maximous N, Nakhla G, Wan W, Wong K (2010a) Performance of a novel ZrO2/PES membrane for wastewater filtration. J Membr Sci 352:222–230. doi:10.1016/j.memsci.2010.02.021

  265. Maximous N, Nakhla G, Wong K, Wan W (2010b) Optimization of Al2O3/PES membranes for wastewater filtration. Sep Purif Technol 73:294–301. doi:10.1016/j.seppur.2010.04.016

  266. Mayer BK, Daugherty E, Abbaszadegan M (2014) Disinfection byproduct formation resulting from settled, filtered, and finished water treated by titanium dioxide photocatalysis. Chemosphere 117:72–78. doi:10.1016/j.chemosphere.2014.05.073

  267. McCutcheon JR, Elimelech M (2008) Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes. J Membr Sci 318:458–466

  268. McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057–1062

  269. Meng F, Chae S-R, Drews A, Kraume M, Shin H-S, Yang F (2009) Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Res 43:1489–1512. doi:10.1016/j.watres.2008.12.044

  270. Merajin MT, Sharifnia S, Hosseini SN, Yazdanpour N (2013) Photocatalytic conversion of greenhouse gases (CO2 and CH4) to high value products using TiO2 nanoparticles supported on stainless steel webnet. J Taiwan Inst Chem Eng 44:239–246. doi:10.1016/j.jtice.2012.11.007

  271. Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) (2007) The fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, United Kingdom and New York, NY, USA

  272. Miyawaki J, Lee G-H, Yeh J, Shiratori N, Shimohara T, Mochida I, Yoon S-H (2012) Development of carbon-supported hybrid catalyst for clean removal of formaldehyde indoors. Catal Today 185:278–283. doi:10.1016/j.cattod.2011.09.036

  273. Monárrez-Cordero B, Amézaga-Madrid P, Antúnez-Flores W, Leyva-Porras C, Pizá-Ruiz P, Miki-Yoshida M (2014) Highly efficient removal of arsenic metal ions with high superficial area hollow magnetite nanoparticles synthetized by AACVD method. J Alloys Compd 586(Supplement 1):S520–S525. doi:10.1016/j.jallcom.2012.12.073

  274. Moon GD, Joo JB, Dahl M, Jung H, Yin Y (2014) Nitridation and layered assembly of hollow TiO2 shells for electrochemical energy storage. Adv Funct Mater 24:848–856

  275. Moradi O (2013) Adsorption behavior of basic red 46 by single-walled carbon nanotubes surfaces. Fullerenes, Nanotubes, Carbon Nanostruct 21:286–301

  276. Mr A, Dimitroulopouloub C (2009) Personal exposure of children to air pollution. Atmos Environ 43:128–141

  277. Mubarak NM, Alicia RF, Abdullah EC, Sahu JN, Haslija ABA, Tan J (2013) Statistical optimization and kinetic studies on removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar. J Environ Chem Eng 1:486–495. doi:10.1016/j.jece.2013.06.011

  278. Müller B, Zumbuehl A, Walter MA, Pfohl T, Cattin PC, Huwyler J, Hieber SE (2015) Translational medicine: nanoscience and nanotechnology to improve patient care. The nano-micro interface: bridging the micro and nano worlds 289–310. books.google.com

  279. Nassar NN (2010) Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents. J Hazard Mater 184:538–546. doi:10.1016/j.jhazmat.2010.08.069

  280. Natural Resources Conservation Service N (2000) Heavy metal soil contamination. Soil Quality Institute, United States Department of Agriculture. www.nrcs.usda.gov

  281. Nguyen NH, Bai H (2015) Effect of washing pH on the properties of titanate nanotubes and its activity for photocatalytic oxidation of NO and NO2. Appl Surf Sci 355:672–680. doi:10.1016/j.apsusc.2015.07.118

  282. Niksefat N, Jahanshahi M, Rahimpour A (2014) The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application. Desalination 343:140–146. doi:10.1016/j.desal.2014.03.031

  283. NSTC/NNI/NSET (2003) National nanotechnology initiative: research and development supporting the next industrial revolution. www.nano.gov

  284. Nuasaen S, Opaprakasit P, Tangboriboonrat P (2014) Hollow latex particles functionalized with chitosan for the removal of formaldehyde from indoor air. Carbohydr Polym 101:179–187. doi:10.1016/j.carbpol.2013.09.059

  285. Obalová L, Reli M, Lang J, Matějka V, Kukutschová J, Lacný Z, Kočí K (2013) Photocatalytic decomposition of nitrous oxide using TiO2 and Ag-TiO2 nanocomposite thin films. Catal Today 209:170–175. doi:10.1016/j.cattod.2012.11.012

  286. Ohama Y, Van Gemert D (2011) Application of titanium dioxide photocatalysis to construction materials: state-of-the-art report of the RILEM Technical Committee 194-TDP vol 5. Springer Science & Business Media

  287. Pacholczyk A et al (2011) Phenol adsorption on closed carbon nanotubes. J Colloid Interface Sci 361:288–292. doi:10.1016/j.jcis.2011.05.032

  288. Page K, Palgrave RG, Parkin IP, Wilson M, Savin SLP, Chadwick AV (2007) Titania and silver-titania composite films on glass-potent antimicrobial coatings. J Mater Chem 17:95–104. doi:10.1039/B611740F

  289. Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013. doi:10.1021/es801777n

  290. Pan B, Lin D, Mashayekhi H, Xing B (2008) Adsorption and hysteresis of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials. Environ Sci Technol 42:5480–5485. doi:10.1021/es8001184

  291. Pan L, Zou J-J, Wang S, Huang Z-F, Yu A, Wang L, Zhang X (2013) Quantum dot self-decorated TiO2 nanosheets. Chem Commun 49:6593–6595

  292. Pan L, Wang S, Zou J-J, Huang Z-F, Wang L, Zhang X (2014) Ti3+-defected and V-doped TiO2 quantum dots loaded on MCM-41. Chem Commun 50:988–990. doi:10.1039/c3cc47752e

  293. Pang R, Li X, Li J, Lu Z, Sun X, Wang L (2014) Preparation and characterization of ZrO2/PES hybrid ultrafiltration membrane with uniform ZrO2 nanoparticles. Desalination 332:60–66. doi:10.1016/j.desal.2013.10.024

  294. Park JH, Bolan N, Megharaj M, Naidu R (2011) Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils. Sci Total Environ 409:853–860

  295. Park S, Park S, Jung J, Hong T, Lee S, Kim HW, Lee C (2014) H2S gas sensing properties of CuO-functionalized WO3 nanowires. Ceram Int 40:11051–11056. doi:10.1016/j.ceramint.2014.03.120

  296. Paul D (2004) Reformulation of the solution-diffusion theory of reverse osmosis. J Membr Sci 241:371–386

  297. Pendergast MM, Hoek EM (2011) A review of water treatment membrane nanotechnologies. Energ Environ Sci 4:1946–1971

  298. Pendergast MTM, Nygaard JM, Ghosh AK, Hoek EMV (2010) Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction. Desalination 261:255–263. doi:10.1016/j.desal.2010.06.008

  299. Peng X, Li Y, Luan Z, Di Z, Wang H, Tian B, Jia Z (2003) Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chem Phys Lett 376:154–158. doi:10.1016/S0009-2614(03)00960-6

  300. Peng X, Luan Z, Di Z, Zhang Z, Zhu C (2005) Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb(II) and Cu(II) from water. Carbon 43:880–883. doi:10.1016/j.carbon.2004.11.009

  301. Peng H, Feng S, Zhang X, Li Y, Zhang X (2012a) Adsorption of norfloxacin onto titanium oxide: effect of drug carrier and dissolved humic acid. Sci Total Environ 438:66–71. doi:10.1016/j.scitotenv.2012.08.045

  302. Peng H, Pan B, Wu M, Liu R, Zhang D, Wu D, Xing B (2012b) Adsorption of ofloxacin on carbon nanotubes: solubility, pH and cosolvent effects. J Hazard Mater 211–212:342–348. doi:10.1016/j.jhazmat.2011.12.063

  303. Pera-Titus M, García-Molina V, Baños MA, Giménez J, Esplugas S (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B Environ 47:219–256

  304. Perez-Aguilar NV, Diaz-Flores PE, Rangel-Mendez JR (2011) The adsorption kinetics of cadmium by three different types of carbon nanotubes. J Colloid Interface Sci 364:279–287. doi:10.1016/j.jcis.2011.08.024

  305. Pibiri MCGA, Vahekeni N, Roulet CA (2006) Indoor air purification and ventilation systems sanitation with essential oils. Int J Aromather 16:149–153

  306. Poursaberi T, Hassanisadi M, Torkestani K, Zare M (2012) Development of zirconium (IV)-metalloporphyrin grafted Fe3O4 nanoparticles for efficient fluoride removal. Chem Eng J 189–190:117–125. doi:10.1016/j.cej.2012.02.039

  307. Pratap Reddy M, Venugopal A, Subrahmanyam M (2007) Hydroxyapatite-supported Ag–TiO2 as Escherichia coli disinfection photocatalyst. Water Res 41:379–386. doi:10.1016/j.watres.2006.09.018

  308. Pu Y-C, Ling Y, Chang K-D, Liu C-M, Zhang JZ, Hsu Y-J, Li Y (2014) Surface passivation of TiO2 nanowires using a facile precursor-treatment approach for photoelectrochemical water oxidation. J Phys Chem C 118:15086–15094

  309. Pyankov OVAI, Huang R, Mullins BJ (2008) Removal of biological aerosols by oil coated filters. Clean Soil Air Water 36:609–614

  310. Pyrzyńska K, Bystrzejewski M (2010) Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids Surf A Physicochem Eng Asp 362:102–109. doi:10.1016/j.colsurfa.2010.03.047

  311. Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700. doi:10.1016/j.carres.2004.09.007

  312. Qu S, Huang F, Yu S, Chen G, Kong J (2008) Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. J Hazard Mater 160:643–647. doi:10.1016/j.jhazmat.2008.03.037

  313. Qu X, Alvarez PJJ, Li Q (2013a) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946. doi:10.1016/j.watres.2012.09.058

  314. Qu X, Brame J, Li Q, Alvarez PJJ (2013b) Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res 46:834–843. doi:10.1021/ar300029v

  315. Rafiq Z, Nazir R, Durre S, Shah MR, Ali S (2014) Utilization of magnesium and zinc oxide nano-adsorbents as potential materials for treatment of copper electroplating industry wastewater. J Environ Chem Eng 2:642–651. doi:10.1016/j.jece.2013.11.004

  316. Rahimpour A (2011) UV photo-grafting of hydrophilic monomers onto the surface of nano-porous PES membranes for improving surface properties. Desalination 265:93–101. doi:10.1016/j.desal.2010.07.037

  317. Rahimpour A, Madaeni SS (2007) Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: preparation, morphology, performance and antifouling properties. J Membr Sci 305:299–312. doi:10.1016/j.memsci.2007.08.030

  318. Rahimpour A, Madaeni SS, Taheri AH, Mansourpanah Y (2008) Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. J Membr Sci 313:158–169. doi:10.1016/j.memsci.2007.12.075

  319. Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9:40–50. doi:10.1016/S1369-7021(06)71389-X

  320. Ramsden J (2009) Essentials of nanotechnology. BookBoon. books.google.com

  321. Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224–231. doi:10.1016/j.seppur.2006.12.006

  322. Raymundo-Piñero E, Azaïs P, Cacciaguerra T, Cazorla-Amorós D, Linares-Solano A, Béguin F (2005) KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 43:786–795. doi:10.1016/j.carbon.2004.11.005

  323. Razmjou A, Mansouri J, Chen V (2011a) The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. J Membr Sci 378:73–84. doi:10.1016/j.memsci.2010.10.019

  324. Razmjou A, Mansouri J, Chen V, Lim M, Amal R (2011b) Titania nanocomposite polyethersulfone ultrafiltration membranes fabricated using a low temperature hydrothermal coating process. J Membr Sci 380:98–113. doi:10.1016/j.memsci.2011.06.035

  325. Razmjou A, Resosudarmo A, Holmes RL, Li H, Mansouri J, Chen V (2012) The effect of modified TiO2 nanoparticles on the polyethersulfone ultrafiltration hollow fiber membranes. Desalination 287:271–280. doi:10.1016/j.desal.2011.11.025

  326. Recillas S, García A, González E, Casals E, Puntes V, Sánchez A, Font X (2011) Use of CeO2, TiO2 and Fe3O4 nanoparticles for the removal of lead from water: toxicity of nanoparticles and derived compounds. Desalination 277:213–220. doi:10.1016/j.desal.2011.04.036

  327. Ren X, Chen C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170:395–410. doi:10.1016/j.cej.2010.08.045

  328. Reyhanitabar LA, Khataee A, Oustan S (2012) Application of stabilized Fe0 nanoparticles for remediation of Cr (VI)-spiked soil. Eur J Soil Sci 63:724–732

  329. Richardson SD, Plewa MJ, Wagner ED, Schoeny R, DeMarini DM (2007) Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat Res Rev Mutat Res 636:178–242

  330. Robinson BH, Bañuelos G, Conesa HM, Evangelou MWH, Schulin R (2009) The phytomanagement of trace elements in soil. Crit Rev Plant Sci 28:240–266

  331. Rodriguez JA, Liu P, Pérez M, Liu G, Hrbek J (2010) Destruction of SO2 on Au and Cu nanoparticles dispersed on MgO(100) and CeO2(111). J Phys Chem A 114:3802–3810. doi:10.1021/jp905761s

  332. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904–2939

  333. Rutala WA, Weber DJ, Control CfD (2008) Guideline for disinfection and sterilization in healthcare facilities, 2008. Centers for Disease Control (US). http://www.cdc.gov/hicpac/pdf/guidelines/Disinfection_Nov_2008.pdf

  334. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779. doi:10.1021/cr2001178

  335. Salah NH, Jenkins D, Handy R (2014) Graphene and its influence in the improvement of surface plasmon resonance (SPR) based sensors: a review. ijirae.com

  336. Salam MA (2013) Coating carbon nanotubes with crystalline manganese dioxide nanoparticles and their application for lead ions removal from model and real water. Colloids Surf A Physicochem Eng Asp 419:69–79. doi:10.1016/j.colsurfa.2012.11.064

  337. Salam MA, Makki MSI, Abdelaal MYA (2011) Preparation and characterization of multi-walled carbon nanotubes/chitosan nanocomposite and its application for the removal of heavy metals from aqueous solution. J Alloys Compd 509:2582–2587. doi:10.1016/j.jallcom.2010.11.094

  338. Saleh TA, Gupta VK (2012) Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Interface Sci 371:101–106. doi:10.1016/j.jcis.2011.12.038

  339. Saleh TA, Shuaib TD, Danmaliki GI, Al-Daous MA (2015) Carbon-based nanomaterials for desulfurization: classification, preparation, and evaluation. Applying nanotechnology to the desulfurization process in petroleum engineering, pp 154. books.google.com

  340. Sánchez-Hernández L, Hernández-Domínguez D, Bernal J, Neusüß C, Martín MT, Bernal JL (2014) Capillary electrophoresis–mass spectrometry as a new approach to analyze neonicotinoid insecticides. J Chromatogr A 1359:317–324

  341. Sathish M, Viswanath R, Gopinath CS (2009) N, S-Co-doped TiO2 nanophotocatalyst: synthesis, electronic structure and photocatalysis. J Nanosci Nanotechnol 9:423–432

  342. Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanoparticle Res 7:331–342

  343. Savichtcheva O, Okabe S (2006) Alternative indicators of fecal pollution: relations with pathogens and conventional indicators, current methodologies for direct pathogen monitoring and future application perspectives. Water Res 40:2463–2476

  344. Sawada I, Fachrul R, Ito T, Ohmukai Y, Maruyama T, Matsuyama H (2012) Development of a hydrophilic polymer membrane containing silver nanoparticles with both organic antifouling and antibacterial properties. J Membr Sci 387–388:1–6. doi:10.1016/j.memsci.2011.06.020

  345. Sawai J, Yoshikawa T (2004) Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol 96:803–809. doi:10.1111/j.1365-2672.2004.02234.x

  346. Sawant SY, Somani RS, Bajaj HC, Sharma SS (2012) A dechlorination pathway for synthesis of horn shaped carbon nanotubes and its adsorption properties for CO2, CH4, CO and N2. J Hazard Mater 227–228:317–326. doi:10.1016/j.jhazmat.2012.05.062

  347. Scanlon DO et al (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12:798–801

  348. Serrano E, Rus G, García-Martínez J (2009) Nanotechnology for sustainable energy. Renew Sust Energ Rev 13:2373–2384. doi:10.1016/j.rser.2009.06.003

  349. Shahidi F, Synowiecki J (1991) Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. J Agric Food Chem 39:1527–1532

  350. Shankaran DR, Gobi KV, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors Actuators B Chem 121:158–177

  351. Shanthilal J, Bhattacharya S (2014) Nanoparticles and nanotechnology in food. In: Conventional and advanced food processing technologies. Wiley, pp 567–94. doi:10.1002/9781118406281.ch23

  352. Sheela T, Nayaka YA (2012) Kinetics and thermodynamics of cadmium and lead ions adsorption on NiO nanoparticles. Chem Eng J 191:123–131. doi:10.1016/j.cej.2012.02.080

  353. Shen J-n, Ruan H-m, Wu L-g, Gao C-j (2011) Preparation and characterization of PES–SiO2 organic–inorganic composite ultrafiltration membrane for raw water pretreatment. Chem Eng J 168:1272–1278. doi:10.1016/j.cej.2011.02.039

  354. Sheng G, Li J, Shao D, Hu J, Chen C, Chen Y, Wang X (2010a) Adsorption of copper(II) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids. J Hazard Mater 178:333–340. doi:10.1016/j.jhazmat.2010.01.084

  355. Sheng GD, Shao DD, Ren XM, Wang XQ, Li JX, Chen YX, Wang XK (2010b) Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes. J Hazard Mater 178:505–516. doi:10.1016/j.jhazmat.2010.01.110

  356. Shintani H (2014) Toxic compounds analysis with high performance liquid chromatography detected by electro chemical detector (ECD). Int J Clin Pharmacol Toxicol 3:121–127

  357. Shon HK, Vigneswaran S, Kandasamy J, Cho J (2007) Characteristics of effluent organic matter in wastewater. In: Water and wastewater treatment technologies. EOLSS and UNESCO

  358. Singh SP, Ma LQ, Harris WG (2001) Heavy metal interactions with phosphatic clay: sorption and desorption behaviour. J Environ Qual 30:1961

  359. Singh M, Thanh DN, Ulbrich P, Strnadová N, Štěpánek F (2010) Synthesis, characterization and study of arsenate adsorption from aqueous solution by α- and δ-phase manganese dioxide nanoadsorbents. J Solid State Chem 183:2979–2986. doi:10.1016/j.jssc.2010.09.023

  360. Singh J, Mukherjee A, Sengupta SK, Im J, Peterson GW, Whitten JE (2012) Sulfur dioxide and nitrogen dioxide adsorption on zinc oxide and zirconium hydroxide nanoparticles and the effect on photoluminescence. Appl Surf Sci 258:5778–5785. doi:10.1016/j.apsusc.2012.02.093

  361. Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46:10247–10254

  362. Smical A-I, Hotea V, Oros V, Juhasz J, Pop E (2008) Studies on transfer and bioaccumulation of heavy metals from soil into lettuce. Environ Eng Manag J 7:609–615

  363. So H-M et al (2005) Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J Am Chem Soc 127:11906–11907

  364. Solomon SJ, Schade G, Kuttippurath J, Ladstätter-Weissenmayer A, Burrows J (2008) VOC concentrations in an indoor workplace environment of a university building. Indoor Built Environ 17:260–268

  365. Song K, Kim W, Suh C-Y, Shin D, Ko K-S, Ha K (2013) Magnetic iron oxide nanoparticles prepared by electrical wire explosion for arsenic removal. Powder Technol 246:572–574. doi:10.1016/j.powtec.2013.06.023

  366. Srisitthiratkul C, Pongsorrarith V, Intasanta N (2011) The potential use of nanosilver-decorated titanium dioxide nanofibers for toxin decomposition with antimicrobial and self-cleaning properties. Appl Surf Sci 257:8850–8856. doi:10.1016/j.apsusc.2011.04.083

  367. Stafiej A, Pyrzynska K (2007) Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol 58:49–52. doi:10.1016/j.seppur.2007.07.008

  368. Stark PCBH, Ryan LM, Milton DK, Gold DR (2003) Fungal levels in the home and lower respiratory tract illnesses in the first year of life. Am J Respir Crit Care Med 7:168–232

  369. Su F, Lu C, Cnen W, Bai H, Hwang JF (2009) Capture of CO2 from flue gas via multiwalled carbon nanotubes. Sci Total Environ 407:3017–3023. doi:10.1016/j.scitotenv.2009.01.007

  370. Su F, Lu C, Hu S (2010) Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes. Colloids Surf A Physicochem Eng Asp 353:83–91. doi:10.1016/j.colsurfa.2009.10.025

  371. Su S, Wu W, Gao J, Lu J, Fan C (2012) Nanomaterials-based sensors for applications in environmental monitoring. J Mater Chem 22:18101–18110

  372. Su Y, Cui H, Li Q, Gao S, Shang JK (2013) Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles. Water Res 47:5018–5026. doi:10.1016/j.watres.2013.05.044

  373. Sun M, Su Y, Mu C, Jiang Z (2009) Improved antifouling property of PES ultrafiltration membranes using additive of silica−PVP nanocomposite. Ind Eng Chem Res 49:790–796. doi:10.1021/ie900560e

  374. Sun K, Zhang Z, Gao B, Wang Z, Xu D, Jin J, Liu X (2012a) Adsorption of diuron, fluridone and norflurazon on single-walled and multi-walled carbon nanotubes. Sci Total Environ 439:1–7. doi:10.1016/j.scitotenv.2012.08.022

  375. Sun W, Li Q, Gao S, Shang JK (2012b) Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: part B. Integration with silica monoliths and dynamic treatment. Chem Eng J 185–186:136–143. doi:10.1016/j.cej.2012.01.060

  376. Suri RP, Thornton HM, Muruganandham M (2012) Disinfection of water using Pt-and Ag-doped TiO2 photocatalysts. Environ Technol 33:1651–1659

  377. Tan KA, Morad N, Teng TT, Norli I, Panneerselvam P (2012) Removal of cationic dye by magnetic nanoparticle (Fe3O4) impregnated onto activated maize cob powder and kinetic study of dye waste adsorption. APCBEE Procedia 1:83–89. doi:10.1016/j.apcbee.2012.03.015

  378. Tang CY, She Q, Lay WC, Wang R, Fane AG (2010) Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration. J Membr Sci 354:123–133

  379. Tang W-W et al (2012) Simultaneous adsorption of atrazine and Cu (II) from wastewater by magnetic multi-walled carbon nanotube. Chem Eng J 211–212:470–478. doi:10.1016/j.cej.2012.09.102

  380. Tarboush BJA, Rana D, Matsuura T, Arafat HA, Narbaitz RM (2008) Preparation of thin-film-composite polyamide membranes for desalination using novel hydrophilic surface modifying macromolecules. J Membr Sci 325:166–175. doi:10.1016/j.memsci.2008.07.037

  381. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136. doi:10.1021/cr050569o

  382. Theron J, Walker J, Cloete T (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69

  383. Theron J, Eugene Cloete T, de Kwaadsteniet M (2010) Current molecular and emerging nanobiotechnology approaches for the detection of microbial pathogens. Crit Rev Microbiol 36:318–339

  384. Tiraferri A, Vecitis CD, Elimelech M (2011) Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties. ACS Appl Mater Interfaces 3:2869–2877. doi:10.1021/am200536p

  385. Tranchida PQ, Franchina FA, Dugo P, Mondello L (2015) Comprehensive two‐dimensional gas chromatography‐mass spectrometry: recent evolution and current trends. Mass Spectrom Rev

  386. Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47:2217–2262

  387. Upadhyay RK, Sharma M, Singh DK, Amritphale SS, Chandra N (2012) Photo degradation of synthetic dyes using cadmium sulfide nanoparticles synthesized in the presence of different capping agents. Sep Purif Technol 88:39–45. doi:10.1016/j.seppur.2011.11.040

  388. Upendar K, Sri Hari Kumar A, Lingaiah N, Rama Rao KS, Sai Prasad PS (2012) Low-temperature CO2 adsorption on alkali metal titanate nanotubes. Int J Greenhouse Gas Control 10:191–198. doi:10.1016/j.ijggc.2012.06.008

  389. Usui Y et al (2008) Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects. Small 4:240–246. doi:10.1002/smll.200700670

  390. Vargas-Reus MA, Memarzadeh K, Huang J, Ren GG, Allaker RP (2012) Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens. Int J Antimicrob Agents 40:135–139. doi:10.1016/j.ijantimicag.2012.04.012

  391. Vatanpour V, Madaeni SS, Khataee AR, Salehi E, Zinadini S, Monfared HA (2012) TiO2 embedded mixed matrix PES nanocomposite membranes: influence of different sizes and types of nanoparticles on antifouling and performance. Desalination 292:19–29. doi:10.1016/j.desal.2012.02.006

  392. Vecitis CD, Zodrow KR, Kang S, Elimelech M (2010) Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 4:5471–5479. doi:10.1021/nn101558x

  393. Vecitis CD, Schnoor MH, Rahaman MS, Schiffman JD, Elimelech M (2011) Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environ Sci Technol 45:3672–3679. doi:10.1021/es2000062

  394. Venkata Ramana DK, Yu JS, Seshaiah K (2013) Silver nanoparticles deposited multiwalled carbon nanotubes for removal of Cu(II) and Cd(II) from water: surface, kinetic, equilibrium, and thermal adsorption properties. Chem Eng J 223:806–815. doi:10.1016/j.cej.2013.03.001

  395. Venkatesham V, Madhu GM, Satyanarayana SV, Preetham HS (2013) Adsorption of lead on gel combustion derived nano ZnO. Proc Eng 51:308–313. doi:10.1016/j.proeng.2013.01.041

  396. Vikesland PJ, Wigginton KR (2010) Nanomaterial enabled biosensors for pathogen monitoring—a review. Environ Sci Technol 44:3656–3669

  397. Volkert AA, Haes AJ (2014) Advancements in nanosensors using plastic antibodies. Analyst 139:21–31. doi:10.1039/C3AN01725G

  398. Vuković GD, Marinković AD, Čolić M, Ristić MĐ, Aleksić R, Perić-Grujić AA, Uskoković PS (2010a) Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem Eng J 157:238–248. doi:10.1016/j.cej.2009.11.026

  399. Vuković GD, Tomić SZ, Marinković AD, Radmilović V, Uskoković PS, Čolić M (2010b) The response of peritoneal macrophages to dapsone covalently attached on the surface of carbon nanotubes. Carbon 48:3066–3078. doi:10.1016/j.carbon.2010.04.043

  400. Vuković GD, Marinković AD, Škapin SD, Ristić MĐ, Aleksić R, Perić-Grujić AA, Uskoković PS (2011) Removal of lead from water by amino modified multi-walled carbon nanotubes. Chem Eng J 173:855–865. doi:10.1016/j.cej.2011.08.036

  401. Wang A, Jing H (2014) Tunable catalytic activities and selectivities of metal ion doped TiO2 nanoparticles—oxidation of organic compounds. Dalton Trans 43:1011–1018

  402. Wang HY, Lua AC (2012) Development of metallic nickel nanoparticle catalyst for the decomposition of methane into hydrogen and carbon nanofibers. J Phys Chem C 116:26765–26775. doi:10.1021/jp306519t

  403. Wang JL, Xu LJ (2012) Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Environ Sci Technol 42:251–325

  404. Wang S, Guillen G, Hoek EMV (2005) Direct observation of microbial adhesion to membranes. Environ Sci Technol 39:6461–6469. doi:10.1021/es050188s

  405. Wang Y-Q, Su Y-L, Sun Q, Ma X-L, Jiang Z-Y (2006) Generation of anti-biofouling ultrafiltration membrane surface by blending novel branched amphiphilic polymers with polyethersulfone. J Membr Sci 286:228–236. doi:10.1016/j.memsci.2006.09.040

  406. Wang H, Zhou A, Peng F, Yu H, Yang J (2007a) Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II). J Colloid Interface Sci 316:277–283. doi:10.1016/j.jcis.2007.07.075

  407. Wang HJ, Zhou AL, Peng F, Yu H, Chen LF (2007b) Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb(II) in aqueous solution. Mater Sci Eng A 466:201–206. doi:10.1016/j.msea.2007.02.097

  408. Wang S-G, Gong W-X, Liu X-W, Yao Y-W, Gao B-Y, Yue Q-Y (2007c) Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes. Sep Purif Technol 58:17–23. doi:10.1016/j.seppur.2007.07.006

  409. Wang WD, Serp P, Kalck P, Silva CG, Faria JL (2008a) Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment applications. Mater Res Bull 43:958–967. doi:10.1016/j.materresbull.2007.04.032

  410. Wang X, Chen C, Liu H, Ma J (2008b) Preparation and characterization of PAA/PVDF membrane-immobilized Pd/Fe nanoparticles for dechlorination of trichloroacetic acid. Water Res 42:4656–4664. doi:10.1016/j.watres.2008.08.005

  411. Wang L et al (2009) Simple, rapid, sensitive, and versatile SWNT–paper sensor for environmental toxin detection competitive with ELISA. Nano Lett 9:4147–4152. doi:10.1021/nl902368r

  412. Wang L, Ma W, Xu L, Chen W, Zhu Y, Xu C, Kotov NA (2010a) Nanoparticle-based environmental sensors. Mater Sci Eng R Rep 70:265–274. doi:10.1016/j.mser.2010.06.012

  413. Wang Z, Yu X, Pan B, Xing B (2010b) Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes. Environ Sci Technol 44:978–984. doi:10.1021/es902775u

  414. Wang J et al (2013a) Adsorption of Cu(II) on oxidized multi-walled carbon nanotubes in the presence of hydroxylated and carboxylated fullerenes. PLoS ONE 8, e72475. doi:10.1371/journal.pone.0072475

  415. Wang X, Yang J, Zhu M, Li F (2013b) Characterization and regeneration of Pd/Fe nanoparticles immobilized in modified PVDF membrane. J Taiwan Inst Chem Eng 44:386–392. doi:10.1016/j.jtice.2012.12.007

  416. Wang Y, Zhu Y, Wu S (2013c) A new nano CaO-based CO2 adsorbent prepared using an adsorption phase technique. Chem Eng J 218:39–45. doi:10.1016/j.cej.2012.11.095

  417. Wang K, Zhao P, Guo X, Li Y, Han D, Chao Y (2014a) Enhancement of reactivity in Li4SiO4-based sorbents from the nano-sized rice husk ash for high-temperature CO2 capture. Energy Convers Manag 81:447–454. doi:10.1016/j.enconman.2014.02.054

  418. Wang Y, Fang Z, Kang Y, Tsang EP (2014b) Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI. J Hazard Mater. doi:10.1016/j.jhazmat.2014.04.056

  419. Wang Y, Fang Z, Liang B, Tsang EP (2014c) Remediation of hexavalent chromium contaminated soil by stabilized nanoscale zero-valent iron prepared from steel pickling waste liquor. Chem Eng J 247:283–290. doi:10.1016/j.cej.2014.03.011

  420. Warheit DBWT, Reeda KL, Frerichs S, Sayes CM (2007) Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology 230:90–104

  421. Weis A, Bird MR, Nyström M, Wright C (2005) The influence of morphology, hydrophobicity and charge upon the long-term performance of ultrafiltration membranes fouled with spent sulphite liquor. Desalination 175:73–85. doi:10.1016/j.desal.2004.09.024

  422. Wildgoose GG, Banks CE, Leventis HC, Compton RG (2006) Chemically modified carbon nanotubes for use in electroanalysis. Microchim Acta 152:187–214. doi:10.1007/s00604-005-0449-x

  423. Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491. doi:10.1021/nn800251f

  424. Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon‐nanotube–TiO2 composites. Adv Mater 21:2233–2239

  425. Wu L, Ritchie SMC (2008) Enhanced dechlorination of trichloroethylene by membrane-supported Pd-coated iron nanoparticles. Environ Prog 27:218–224. doi:10.1002/ep.10277

  426. Wu L, Shamsuzzoha M, Ritchie SMC (2005) Preparation of cellulose acetate supported zero-valent iron nanoparticles for the dechlorination of trichloroethylene in water. J Nanoparticle Res 7:469–476. doi:10.1007/s11051-005-4271-5

  427. Wu G, Gan S, Cui L, Xu Y (2008) Preparation and characterization of PES/TiO2 composite membranes. Appl Surf Sci 254:7080–7086. doi:10.1016/j.apsusc.2008.05.221

  428. Wu C-S, Khaing Oo MK, Fan X (2010) Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes. ACS Nano 4:5897–5904. doi:10.1021/nn1021988

  429. Wu C-M, Baltrusaitis J, Gillan EG, Grassian VH (2011) Sulfur dioxide adsorption on ZnO nanoparticles and nanorods. J Phys Chem C 115:10164–10172

  430. Wu HB, Hng HH, Lou XWD (2012) Direct synthesis of anatase TiO2 nanowires with enhanced photocatalytic activity. Adv Mater 24:2567–2571

  431. Xi W, Geissen S-u (2001) Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration. Water Res 35:1256–1262

  432. Xiao J, Xie Y, Cao H (2015) Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere 121:1–17. doi:10.1016/j.chemosphere.2014.10.072

  433. Xie Y, Fang Z, Cheng W, Tsang PE, Zhao D (2014) Remediation of polybrominated diphenyl ethers in soil using Ni/Fe bimetallic nanoparticles: influencing factors, kinetics and mechanism. Sci Total Environ 485–486:363–370. doi:10.1016/j.scitotenv.2014.03.039

  434. Xin X et al (2012) Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe3O4 nanoparticles. Chem Eng J 184:132–140. doi:10.1016/j.cej.2012.01.016

  435. Xing Z, Asiri AM, Obaid AY, Sun X, Ge X (2014) Carbon nanofiber-templated mesoporous TiO2 nanotubes as a high-capacity anode material for lithium-ion batteries. RSC Adv 4:9061–9063

  436. Xiong Z, He F, Zhao DY, Barnett MO (2009) Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Water Res 43:5171–5179

  437. Xiu Z-M, Ma J, Alvarez PJJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45:9003–9008. doi:10.1021/es201918f

  438. Xiu Z-m, Zhang Q-b, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275. doi:10.1021/nl301934w

  439. Xu Y, Zhao D (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 41:2101–2108. doi:10.1016/j.watres.2007.02.037

  440. Xu D, Tan X, Chen C, Wang X (2008) Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. J Hazard Mater 154:407–416. doi:10.1016/j.jhazmat.2007.10.059

  441. Xu Y-j, Rosa A, Liu X, Su D-s (2011) Characterization and use of functionalized carbon nanotubes for the adsorption of heavy metal anions. New Carbon Mater 26:57–62. doi:10.1016/S1872-5805(11)60066-8

  442. Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3:643–646. doi:10.1016/S1466-6049(01)00197-0

  443. Yan L, Li YS, Xiang CB, Xianda S (2006) Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance. J Membr Sci 276:162–167. doi:10.1016/j.memsci.2005.09.044

  444. Yan XM, Shi BY, Lu JJ, Feng CH, Wang DS, Tang HX (2008) Adsorption and desorption of atrazine on carbon nanotubes. J Colloid Interface Sci 321:30–38. doi:10.1016/j.jcis.2008.01.047

  445. Yang GCC, Chang Y-I (2011) Integration of emulsified nanoiron injection with the electrokinetic process for remediation of trichloroethylene in saturated soil. Sep Purif Technol 79:278–284. doi:10.1016/j.seppur.2011.03.004

  446. Yang K, Xing B (2009) Adsorption of fulvic acid by carbon nanotubes from water. Environ Pollut 157:1095–1100. doi:10.1016/j.envpol.2008.11.007

  447. Yang K, Xing B (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem Rev 110:5989–6008. doi:10.1021/cr100059s

  448. Yang J, Mosby DE, Casteel SW, Blanchar RW (2001) Lead immobilization using phosphoric acid in a smelter-contaminated urban soil. Environ Sci Technol 35:3553–3559

  449. Yang K, Wu W, Jing Q, Zhu L (2008) Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes. Environ Sci Technol 42:7931–7936. doi:10.1021/es801463v

  450. Yang H-L, Lin JC-T, Huang C (2009a) Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water Res 43:3777–3786. doi:10.1016/j.watres.2009.06.002

  451. Yang HG et al (2009b) Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J Am Chem Soc 131:4078–4083. doi:10.1021/ja808790p

  452. Yang C, Mamouni J, Tang Y, Yang L (2010a) Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26:16013–16019. doi:10.1021/la103110g