Environmental Science and Pollution Research

, Volume 23, Issue 12, pp 12392–12399

Transport stability of pesticides and PAHs sequestered in polyethylene passive sampling devices

  • Carey E. Donald
  • Marc R. Elie
  • Brian W. Smith
  • Peter D. Hoffman
  • Kim A. Anderson
Research Article

Abstract

Research using low-density polyethylene (LDPE) passive samplers has steadily increased over the past two decades. However, such research efforts remain hampered because of strict guidelines, requiring that these samplers be quickly transported in airtight metal or glass containers or foil wrapped on ice. We investigate the transport stability of model pesticides and polycyclic aromatic hydrocarbons (PAHs) with varying physicochemical properties using polytetrafluoroethylene (PTFE) bags instead. Transport scenarios were simulated with transport times up to 14 days with temperatures ranging between −20 and 35 °C. Our findings show that concentrations of all model compounds examined were stable for all transport conditions tested, with mean recoveries ranging from 88 to 113 %. Furthermore, PTFE bags proved beneficial as reusable, lightweight, low-volume, low-cost alternatives to conventional containers. This documentation of stability will allow for more flexible transportation of LDPE passive samplers in an expanding range of research applications while maintaining experimental rigor.

Keywords

PAH Pesticide LDPE Passive sampling device Transport stability Storage 

Supplementary material

11356_2016_6453_MOESM1_ESM.pdf (113 kb)
ESM 1(PDF 112 kb)

References

  1. Adams RG, Lohmann R, MacFarlane LK, Gschwend PM (2007) Polyethylene devices: passive samplers for measuring dissolved hydrophobic organic compounds in aquatic environments. Environ Sci Technol 41:1317–1323. doi:10.1021/es0621593 CrossRefGoogle Scholar
  2. Allan SE, Smith BW, Anderson KA (2012) Impact of the deepwater horizon oil spill on bioavailable polycyclic aromatic hydrocarbons in Gulf of Mexico coastal waters. Environ Sci Technol 46:2033–2039. doi:10.1021/es202942q CrossRefGoogle Scholar
  3. Alvarez DA (2010) Guidelines for the use of the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS) in environmental monitoring studies. U.S. Geological SurveyGoogle Scholar
  4. Alvarez DA, Maruya KA, Dodder NG, Lao W, Furlong ET, Smalling KL (2014) Occurrence of contaminants of emerging concern along the California coast (2009–10) using passive sampling devices. Mar Pollut Bull 81:347–354. doi:10.1016/j.marpolbul.2013.04.022 CrossRefGoogle Scholar
  5. Anderson KA, Sethajintanin D, Sower GJ, Quarles L (2008) Field trial and modeling of uptake rates of in situ lipid-free polyethylene membrane passive sampler. Environ Sci Technol 42:4486–4493. doi:10.1021/es702657n CrossRefGoogle Scholar
  6. Anderson KA, Seck D, Hobbie KA, Traore AN, McCartney MA, Ndaye A, Forsberg ND, Haigh TA, Sower GJ (2014) Passive sampling devices enable capacity building and characterization of bioavailable pesticide along the Niger, Senegal and Bani Rivers of Africa. Philos T R Soc B 369:20130110. doi:10.1098/rstb.2013.0110 CrossRefGoogle Scholar
  7. Bajaj S, Singla D, Sakhuja N (2012) Stability testing of pharmaceutical products. J App Pharm 02:129–138. doi:10.7324/JAPS.2012.2322 Google Scholar
  8. Booij K, Smedes F, Weerlee EMV (2002) Spiking of performance reference compounds in low density polyethylene and silicone passive water samplers. Chemosphere 46:1157–1161. doi:10.1016/S0045-6535(01)00200-4 CrossRefGoogle Scholar
  9. Booij K, van Bommel R, Mets A, Dekker R (2006) Little effect of excessive biofouling on the uptake of organic contaminants by semipermeable membrane devices. Chemosphere 65:2485–2492. doi:10.1016/j.chemosphere.2006.04.033 CrossRefGoogle Scholar
  10. Fernandez LA, Gschwend PM (2015) Predicting bioaccumulation of polycyclic aromatic hydrocarbons in soft-shelled clams (Mya arenaria) using field deployments of polyethylene passive samplers. Environ Toxicol Chem 34:993–1000. doi:10.1002/etc.2892 CrossRefGoogle Scholar
  11. Fernandez LA, Lao W, Maruya KA, Burgess RM (2014) Calculating the diffusive flux of persistent organic pollutants between sediments and the water column on the Palos Verdes Shelf Superfund Site using polymeric passive samplers. Environ Sci Technol 48:3925–3934. doi:10.1021/es404475c CrossRefGoogle Scholar
  12. Ghosh U et al (2014) Passive sampling methods for contaminated sediments: practical guidance for selection, calibration, and implementation. Integr Environ Assess Manag 10:210–223. doi:10.1002/ieam.1507 CrossRefGoogle Scholar
  13. Huckins JN, Tubergen MW, Manuweera GK (1990) Semipermeable membrane devices containing model lipid: a new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere 20:533–552. doi:10.1016/0045-6535(90)90110-F CrossRefGoogle Scholar
  14. Huckins JN, Petty JD, Lebo JA, Almeida FV, Booij K, Alvarez DA, Cranor WL, Clark RC, Mogensen BB (2002) Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membrane devices. Environ Sci Technol 36:85–91. doi:10.1021/es010991w CrossRefGoogle Scholar
  15. Huckins J, Petty J, Booij K (2006) Monitors of organic chemicals in the environment: semipermeable membrane devices. Springer, New York. doi:10.1007/0-387-35414-X Google Scholar
  16. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use (2003) stability testing of new drug substances and products Q1A(R2)Google Scholar
  17. Khairy M, Muir D, Teixeira C, Lohmann R (2014) Spatial trends, sources, and air-water exchange of organochlorine pesticides in the Great Lakes basin using low density polyethylene passive samplers. Environ Sci Technol 48:9315–9324. doi:10.1021/es501686a CrossRefGoogle Scholar
  18. Korfmacher WA, Wehry EL, Mamantov G, Natusch DFS (1980) Resistance to photochemical decomposition of polycyclic aromatic hydrocarbons vapor-adsorbed on coal fly ash. Environ Sci Technol 14:1094–1099. doi:10.1021/es60169a019 CrossRefGoogle Scholar
  19. Liu H-H, Bao L-J, Feng W-H, Xu S-P, Wu F-C, Zeng EY (2013) A multisection passive sampler for measuring sediment porewater profile of dichlorodiphenyltrichloroethane and its metabolites. Anal Chem 85:7117–7124. doi:10.1021/ac400589a CrossRefGoogle Scholar
  20. Lohmann R (2012) Critical review of low-density polyethylene’s partitioning and diffusion coefficients for trace organic contaminants and implications for its use as a passive sampler. Environ Sci Technol 46:606–618. doi:10.1021/es202702y CrossRefGoogle Scholar
  21. McDonough CA, Khairy MA, Muir DC, Lohmann R (2014) Significance of population centers as sources of gaseous and dissolved PAHs in the lower Great Lakes. Environ Sci Technol 48:7789–7797. doi:10.1021/es501074r CrossRefGoogle Scholar
  22. Melymuk L, Bohlin P, Sanka O, Pozo K, Klanova J (2014) Current challenges in air sampling of semivolatile organic contaminants: sampling artifacts and their influence on data comparability. Environ Sci Technol 48:14077–14091. doi:10.1021/es502164r CrossRefGoogle Scholar
  23. Mills GA, Gravell A, Vrana B, Harman C, Budzinski H, Mazzella N, Ocelka T (2013) Measurement of environmental pollutants using passive sampling devices—an updated commentary on the current state of the art. Env Sci Process Impact 16:369–373. doi:10.1039/c3em00585b CrossRefGoogle Scholar
  24. O’Connell SG, Haigh T, Wilson G, Anderson KA (2013) An analytical investigation of 24 oxygenated-PAHs (OPAHs) using liquid and gas chromatography–mass spectrometry. Anal Bioanal Chem 405:8885–8896. doi:10.1007/s00216-013-7319-x CrossRefGoogle Scholar
  25. O’Connell SG, Kincl LD, Anderson KA (2014) Silicone wristbands as personal passive samplers. Environ Sci Technol 48:3327–3335. doi:10.1021/es405022f CrossRefGoogle Scholar
  26. Oen AM, Janssen EM, Cornelissen G, Breedveld GD, Eek E, Luthy RG (2011) In situ measurement of PCB pore water concentration profiles in activated carbon-amended sediment using passive samplers. Environ Sci Technol 45:4053–4059. doi:10.1021/es200174v CrossRefGoogle Scholar
  27. Paulik LB, Donald CE, Smith BW, Tidwell LG, Hobbie KA, Kincl L, Haynes EN, Anderson KA (2015) Impact of natural gas extraction on PAH levels in ambient air. Environ Sci Technol 49:5203–5210. doi:10.1021/es506095e CrossRefGoogle Scholar
  28. Rueck A, Hellriegel C (2014) The importance of accelerated stability tests for the development of certified reference materials (CRM). Sigma-Aldrich Marketing Communications Europe, BuchsGoogle Scholar
  29. Rusina TP, Smedes F, Klanova J, Booij K, Holoubek I (2007) Polymer selection for passive sampling: a comparison of critical properties. Chemosphere 68:1344–1351. doi:10.1016/j.chemosphere.2007.01.025 CrossRefGoogle Scholar
  30. Tidwell LG, Allan SE, O’Connell SG, Hobbie KA, Smith BW, Anderson KA (2015) Polycyclic aromatic hydrocarbon (PAH) and oxygenated PAH (OPAH) air-water exchange during the deepwater horizon oil spill. Environ Sci Technol 49:141–149. doi:10.1021/es503827y CrossRefGoogle Scholar
  31. U.S. Environmental Protection Agency (2012) Guidelines for using passive samplers to monitor organic contaminants at superfund sediment sites. Office of Superfund Remediation and Technology Innovation, Office of Research and DevelopmentGoogle Scholar
  32. U.S. Environmental Protection Agency (2015) Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.1.25. United States Environmental Protection Agency, WashingtonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Carey E. Donald
    • 1
  • Marc R. Elie
    • 1
    • 2
  • Brian W. Smith
    • 1
  • Peter D. Hoffman
    • 1
  • Kim A. Anderson
    • 1
  1. 1.Environmental and Molecular Toxicology DepartmentOregon State UniversityCorvallisUSA
  2. 2.Department of Pharmaceutical Sciences, Skaggs School of PharmacyUniversity of Colorado Anschutz Medical CampusDenverUSA

Personalised recommendations