Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 13, pp 13355–13367 | Cite as

Multibiomarker toxicity characterization of uranium mine drainages to the fish Carassius auratus

  • M. L. Bessa
  • S. C. Antunes
  • R. Pereira
  • F. J. M. Gonçalves
  • B. Nunes
Research Article

Abstract

The release of acidic effluents, naturally enriched in metals and radionuclides, is the main legacy of uranium mines. Generally, metals dissolved by these acidic effluents can cause significant alterations in exposed organisms, with distinct toxicological outcomes. In this study, 72 individuals of the freshwater fish species Carassius auratus were exposed in situ for different periods (8, 16, 24, and 48 h) to water from a pond (treatment pond (TP)) with a chemically treated effluent and a reference pond (PRP), in the vicinity of the Cunha Baixa uranium mine (Portugal). Comparing the water of the two ponds, the PRP pond was characterized by higher pH and oxygen values and lower conductivity and hardness values. Regarding total metal concentrations, among others, magnesium (56,000 μg/L), sodium (17,400 μg/L), zinc (86 μg/L), manganese (6340 μg/L), and uranium (1380 μg/L) concentrations in the TP pond were above the values obtained for the PRP pond. The values of manganese and uranium exceeded the values of quality criteria established for surface waters for cyprinids and for irrigation purposes. After exposure to pond water, significant differences were recorded for several biomarkers: (i) between ponds for acetylcholinesterase (AChE) with higher activities for animals from the PRP and glutathione-S-transferase (GST) activities that were particularly enhanced in animals from the TP pond; (ii) between ponds and exposure periods for lactate dehydrogenase (LDH) activity, since organisms from PRP pond presented always higher values than those from the TP pond, and among these, organisms exposed for the longer period presented a further depression in LDH activity; and (iii) between exposure periods for erythrocyte micronucleus. GSTs and LDH were the most sensitive biomarkers within the timeframe of the in situ assay performed. Despite the alleged efficacy of the chemical treatment (evidenced by a significantly lower pH), some metals persisted in the treated effluent (TP pond), potentially contributing to the induction of oxidative stress or increased conjugation metabolic activity in fish.

Keywords

Acidic mine effluent In situ assay Carassius auratus Biomarkers Erythrocytic nuclear abnormalities 

Notes

Acknowledgments

This work was partially funded by Fundação para a Ciência e a Tecnologia—POCI 2010 and FEDER (POCI/AMB/60899/2004 and PPCDT/AMB/60899/2004). Thanks are due for the financial support to CESAM (UID/AMB/50017), to FCT/MEC through national funds, and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020.

References

  1. Aebi H (1984) Catalase in vitro. Method Enzymol 6:105–121Google Scholar
  2. Ahmad I, Hamid T, Fatima M, Chand HS, Jain SK, Athar M, Raisuddin S (2000) Induction of hepatic antioxidants in freshwater catfish (Channa punctatus) is a biomarker of paper mill effluent exposure. Biochim Biophys Acta 1519:37–48CrossRefGoogle Scholar
  3. Antunes SC, Pereira R, Gonçalves F (2007) Acute and chronic toxicity of effluent water from an abandoned uranium mine. Arch Environ Contam Toxicol 53:207–213CrossRefGoogle Scholar
  4. Antunes SC, Castro BB, Pereira R, Gonçalves F (2008) Contribution for tier I of the ecological risk assessment of Cunha Baixa uranium mine (Central Portugal): II soil ecotoxicological screening. Sci Total Environ 390:387–395CrossRefGoogle Scholar
  5. APHA (1995) Standard methods for the examination of water and wastewater, 19th ednGoogle Scholar
  6. ASTM (1980) Standard practice for conducting acute toxicity tests with fishes, macroinvertebrates and amphibians. Report E-790-80 Annual Book of ASTM Standards. American Society for Testing and Materials, PhiladelphiaGoogle Scholar
  7. Barata C, Lekumberri I, Vila-Escalé M, Prat N, Porte C (2005) Trace metal concentration, antioxidant enzyme activities and susceptibility to oxidative stress in the tricoptera larvae Hydropsyche exocellata from the Llobregat river basin (NE Spain). Aquat Toxicol 74:3–19CrossRefGoogle Scholar
  8. Baršienè J, Dedonytė V, Rybakovas A, Andreikėnaitė L, Andersen OK (2006) Investigation of micronuclei and other nuclear abnormalities in peripheral blood and kidney of marine fish treated with crude oil. Aquat Toxicol 78S:99–104CrossRefGoogle Scholar
  9. Bolognesi C, Perrone E, Roggieri P, Pampanin D, Sciutto A (2006) Assessment of micronuclei induction in peripheral erythrocytes of fish exposed to xenobiotics under controlled conditions. Aquat Toxicol 78S:93–98CrossRefGoogle Scholar
  10. Brandão F, Correia AT, Gonçalves F, Nunes B (2013) Effects of anthropogenic metallic contamination on cholinesterases of Gambusia holbrooki. Mar Pollut Bull 76(1–2):72–76CrossRefGoogle Scholar
  11. Bradford M (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  12. Bussy C, Lestaevel P, Dhieux B, Amourette C, Paquet F, Gourmelon P, Houpert P (2006) Chronic ingestion of uranyl nitrate perturbs acetylcholinesterase activity and monoamine metabolism in male rat brain. Neurotoxicology 27:245–252Google Scholar
  13. Canli EG, Canli M (2015) Low water conductivity increases the effects of copper on the serum parameters in fish (Oreochromis niloticus). Envir Toxicol Pharmacol 39:606–613CrossRefGoogle Scholar
  14. Carrasco KR, Tilbury KL, Myers MS (1990) Assessment of the piscine micronuclei test as an in situ biological indicator of chemical contaminant effects. Can J Fish Aquat Sci 47:2123–2136CrossRefGoogle Scholar
  15. Carvalho FP, Madruga MJ, Reis MC, Alves JG, Oliveira JM, Gouveia J, Silva L (2007) Radioactivity in the environment around past radium and uranium mining sites of Portugal. J Environ Radioact 96:39–46CrossRefGoogle Scholar
  16. Carvalho CS, Bernusso VA, Fernandes MN (2015) Copper levels and changes in pH induce oxidative stress in the tissue of curimbata (Prochilodus lineatus). Aquat Toxicol 167:220–227CrossRefGoogle Scholar
  17. Castro BB, Sobral O, Guilhermino L, Ribeiro R (2004) An in situ bioassay integrating individual and biochemical responses using small fish species. Ecotoxicology 13:667–681CrossRefGoogle Scholar
  18. Çavaş T, Ergene-Gözükara S (2003) Micronuclei, nuclear lesions and interphase silver-stained nucleolar organizer regions (AgNORs) as cyto-genotoxicity indicators in Oreochromis niloticus exposed to textile mill effluent. Mutat Res 538:81–91CrossRefGoogle Scholar
  19. Çavaş T, Ergene-Gözükara S (2005) Induction of micronuclei and nuclear abnormalities in Oreochromis niloticus following exposure to petroleum refinery and chromium processing plant effluents. Aquat Toxicol 74:264–271CrossRefGoogle Scholar
  20. Charron L, Geffard O, Chaumot A, Coulaud R, Queau H, Geffard A, Dedourge-Geffard O (2013) Effect of water quality and confounding factors on digestive enzyme activities in Gammarus fossarum. Environ Sci Pollut Res Int 20(12):9044–56CrossRefGoogle Scholar
  21. Coulaud R, Geffard O, Xuereb B, Lacaze E, Quéau H, Garric J, Charles S, Chaumot A (2011) In situ feeding assay with Gammarus fossarum (Crustacea): modelling the influence of confounding factors to improve water quality biomonitoring. Water Res 45(19):6417–6429CrossRefGoogle Scholar
  22. de la Torre FR, Salibián A, Ferrari L (2007) Assessment of the pollution impact on biomarkers of effect of a freshwater fish. Chemosphere 68:582–1590Google Scholar
  23. Dautremepuits C, Betoulle S, Vernet G (2002) Antioxidant response modulated by copper in healthy or parasitized carp (Cyprinus carpio L.) by Ptychobothrium sp. (Cestoda). Biochim Biophys Acta 1573:4–8CrossRefGoogle Scholar
  24. Dogan Z, Eroglu A, Kanak EG, Atli G, Canli M (2014) Response of antioxidant system of tilapia (Oreochromis niloticus) following exposure to chromium and copper in differing hardness. Bull Environ Contam Toxicol 92:680–686CrossRefGoogle Scholar
  25. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95CrossRefGoogle Scholar
  26. Elumalai M, Antunes C, Guilhermino L (2002) Effects of single metals and their mixtures on selected enzymes of Carcinus maenas. Water Air Soil Poll 141:273–280CrossRefGoogle Scholar
  27. Elumalai M, Antunes C, Guilhermino L (2007) Enzymatic biomarkers in the crab Carcinus maenas from the Minho River estuary (NW Portugal) exposed to zinc and mercury. Chemosphere 66:1249–1255CrossRefGoogle Scholar
  28. Frasco MF, Guilhermino L (2002) Effects of dimethoate and beta-naphthoflavone on selected biomarkers of Poecilia reticulata. Fish Physiol Biochem 26:149–156CrossRefGoogle Scholar
  29. Freitas DRJ, Rosa RM, Moraes J, Campos E, Logullo C, Da Silva Vaz Jr I, Masuda A (2007) Relationship between glutathione-S-transferase, catalase, oxygen, consumption, lipid peroxidation and oxidative stress in eggs and larvae of Boophilus microplus (Acarina: Ixodidae). Comp Biochem Physiol A 146:688–694CrossRefGoogle Scholar
  30. Fulton MH, Key PB (2001) Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ Toxicol Chem 20:37–45CrossRefGoogle Scholar
  31. Guilherme S, Válega M, Pereira ME, Santos MA, Pacheco M (2008) Erythrocytic nuclear abnormalities in wild and caged fish (Liza aurata) along an environmental mercury contamination gradient. Ecotoxicol Environ Saf 70:411–421CrossRefGoogle Scholar
  32. Gustavino B, Scornajenghi KA, Minissi S, Ciccotti E (2001) Micronuclei induced in erythrocytes of Cyprinus carpio (teleostei, pisces) by X-rays and colchicines. Mutat Res 494:151–159CrossRefGoogle Scholar
  33. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases—the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139Google Scholar
  34. Hodgson E, Levi P (2004) Hepatotoxicity. In: Hodgson E (ed) A textbook of modern toxicology. Wiley Interscience, New Jersey, pp 263–272CrossRefGoogle Scholar
  35. INAG (2009) Critérios para a Classificação do Estado de Massas de Água Superficiais – Rios e Albufeiras. Instituto da Água, IP. Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional. Lisboa, PortugalGoogle Scholar
  36. Lange B, Vejdelek ZJ (1980) Photometrische Analyse. Verlag Chemie, WeinheimGoogle Scholar
  37. Leblanc GA (2004) Acute toxicity. In: Hodgson E (ed) A textbook of modern toxicology. Wiley Interscience, New Jersey, pp 215–224Google Scholar
  38. Lemos CT, Rödel PM, Terra NR, Oliveira NCA, Erdtmann B (2007) River water genotoxicity evaluation using micronucleus assay in fish erythrocytes. Ecotoxicol Environ Saf 66:391–401CrossRefGoogle Scholar
  39. Liu H, Wang W, Zhang J, Wang X (2006) Effects of copper and its ethylenediaminetetraacetate complex on the antioxidant defenses of the goldfish, Carassius auratus. Ecotoxicol Environ Saf 65:350–354CrossRefGoogle Scholar
  40. Lourenço J, Pereira R, Silva A, Morgado J, Carvalho F, Oliveira J, Malta M, Paiva A, Mendo S, Gonçalves F (2011) Genotoxic endpoints in the earthworms sub-lethal assay to evaluate natural soils contaminated by metals and radionuclides. J Hazard Mater 186:788–795CrossRefGoogle Scholar
  41. Lourenço J, Pereira R, Silva A, Carvalho F, Oliveira J, Malta M, Paiva A, Gonçalves F, Mendo S (2012) Evaluation of the sensitivity of genotoxicity and cytotoxicity endpoints in earthworms exposed in situ to uranium mining wastes. Ecotoxicol Environ Saf 75:46–54CrossRefGoogle Scholar
  42. Lushchak OV, Kubrak OI, Lozinsky OV, Storey JM, Storey KB, Lushchak VI (2009) Chromium (III) induces oxidative stress in goldfish liver and kidney. Aquat Toxicol 93:45–52CrossRefGoogle Scholar
  43. MA (1998) Decreto lei n° 236/98 de 1 de Agosto. Ministério do Ambiente. Diário da República I série, A 176:3676-3722Google Scholar
  44. MAOT (2010) Decreto-Lei n.º 103/2010 de 24 de Setembro. Ministério do Ambiente e do Ordenamento do Território. Diário da República I série 187:4289–4296. Lisboa, PortugalGoogle Scholar
  45. Marques SM, Antunes SC, Pissarra H, Pereira ML, Gonçalves F, Pereira R (2009) Histopathological changes and erytrocytic nuclear abnormalities in Iberian green frogs (Rana perezi Seoane) from a uranium mine pond. Aquat Toxicol 91:187–195CrossRefGoogle Scholar
  46. Marques SM, Antunes SC, Nunes B, Gonçalves F, Pereira R (2011) Antioxidant response and metal accumulation in tissues of Iberian green frogs (Pelophylax perezi) inhabiting a deactivated uranium mine. Ecotoxicology 20:1315–1327CrossRefGoogle Scholar
  47. Michaelidis B, Spring A, Pörtner HO (2007) Effects of long-term acclimation to environmental hypercapnia on extracellular acid–base status and metabolic capacity in Mediterranean fish Sparus aurata. Mar Biol 150:1417–1429CrossRefGoogle Scholar
  48. Minissi S, Ciccotti E, Rizzoni M (1996) Micronucleus test in erythrocytes of Barbus plebejus (Teleostei, Pisces) from two natural environments: a bioassay for the in situ detection of mutagens in freshwater. Mutat Res 367:245–251CrossRefGoogle Scholar
  49. Nunes B, Caldeira C, Pereira J, Gonçalves F, Correia AT (2015a). Chronic effects of realistic concentrations of non-essential and essential metals (lead and zinc) on oxidative stress biomarkers of the mosquitofish, Gambusia holbrooki. Archives of Environmental Contamination and Toxicology 69(4):586-95. doi: 10.1007/s00244-015-0190-3.Google Scholar
  50. Nunes B, Caldeira C, Pereira JL, Gonçalves F, Correia AT (2015b). Perturbations in ROS-related processes of the fish Gambusia holbrooki after acute and chronic exposures to the metals copper and cadmium. Environmental Science and Pollution Research 22(5):3756-65.Google Scholar
  51. Nunes B, Capela RC, Rodrigues S, Caldeira C, Gonçalves F, Correia AT (2014a). Chronic effects of lead, copper, zinc, and cadmium on biomarkers of the European eel, Anguilla anguilla. Environmental Science and Pollution Research 21(8):5689-700.Google Scholar
  52. Nunes B, Barbosa AR, Antunes SC, Gonçalves F (2014b) Combination effects of anticholinesterasics in acetylcholinesterase of a fish species: effects of a metallic compound, an organophosphate pesticide and a pharmaceutical drug. Environmental Science and Pollution Research 21(9):6258-62.Google Scholar
  53. Nunes B (2011) The use of cholinesterases in ecotoxicology. Rev Environ Contam Toxicol 212:29–59Google Scholar
  54. Nunes B, Carvalho F, Guilhermino L (2006) Effects of widely used pharmaceuticals and a detergent on a oxidative stress biomarkers of the crustacean Artemia parthenogenetica. Chemosphere 62:581–594CrossRefGoogle Scholar
  55. Oliva M, Perales JA, Gravato C, Guilhermino L, Galindo-Riaño MD (2012) Biomarkers responses in muscle of Senegal sole (Solea senegalensis) from a heavy metals and PAHs polluted estuary. Mar Pollut Bull 64(10):2097–2108CrossRefGoogle Scholar
  56. Oliveira JMS, Ávila PF (2001) Geochemistry of the surrounding area of Cunha Baixa uranium mine (Mangualde, Centre of Portugal). Estudos, Notas e Trabalhos, Tomo 43. Instituto Geológico e Mineiro. Lisboa, PortugalGoogle Scholar
  57. Ozmen M, Güngördü A, Kucukbay Z, Güler RE (2006) Monitoring the effects of water pollution on Cyprinus carpio in Karakaya Dam Lake, Turkey. Ecotoxicology 15:157–169CrossRefGoogle Scholar
  58. Pereira AMM, Soares AMVM, Gonçalves F, Ribeiro R (2000) Water-column, sediment, and in situ chronic bioassays with cladocerans. Ecotoxicol Environ Saf 47:27–38CrossRefGoogle Scholar
  59. Pereira R, Antunes SC, Marques SM, Gonçalves F (2008) Contribution for tier I of the ecological risk assessment of Cunha Baixa uranium mine (Central Portugal): I soil chemical characterization. Sci Total Environ 390:377–386CrossRefGoogle Scholar
  60. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, p 537CrossRefGoogle Scholar
  61. Rao JV (2006) Biochemical alterations in euryhaline fish, Oreochromis mossambicus exposed to sub-lethal concentrations of an organophosphorus insecticide, monocrotophos. Chemosphere 65:814–1820Google Scholar
  62. Richetti SK, Rosemberg DB, Ventura-Lima J, Monserrat JM, Bogo MR, Bonan CD (2011) Acetylcholinesterase activity and antioxidant capacity of zebrafish brain is altered by heavy metal exposure. Neurotoxicology 32:116–122Google Scholar
  63. Saglam D, Atli G, Canli M (2013) Investigations on the osmoregulation of freshwater fish (Oreochromis niloticus) following exposures to metals (Cd, Cu) in differing hardness. Ecotoxicol Environ Saf 92:79–86CrossRefGoogle Scholar
  64. Sanchez W, Palluel O, Meunier L, Coquery M, Porcher J, Aït-Aïssa S (2005) Copper-induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels. Environ Toxicol Pharmacol 19:177–183CrossRefGoogle Scholar
  65. Santos D, Milatovic D, Andrade V, Batoreu MC, Aschner M, Marreilha dos Santos AP (2012) The inhibitory effect of manganese on acetylcholinesterase activity enhances oxidative stress and neuroinflammation in the rat brain. Toxicology 292:90–98CrossRefGoogle Scholar
  66. Santos Oliveira JM, Ávila PF (1998) Geochemistry study in the surrounding area of Cunha Baixa mine (Mangualde, Centre of Portugal). Relatório do Instituto Geológico e Mineiro. Lisboa, PortugalGoogle Scholar
  67. Schrader M, Fahimi HD (2006) Peroxisomes and oxidative stress. Biochim Biophys Acta 1763:1755–1766CrossRefGoogle Scholar
  68. Sen A, Semiz A (2007) Effects of metals and detergents on biotransformation and detoxification enzymes of leaping mullet (Liza saliens). Ecotoxicol Environ Saf 68:405–411CrossRefGoogle Scholar
  69. Sheppard SC, Sheppard MI, Gallerand M-O, Sanipelli B (2005) Derivation of ecotoxicity thresholds for uranium. J Environ Radioact 79:55–83CrossRefGoogle Scholar
  70. Stegeman JJ, Brouwer M, Di Giulio RT, Förlin L, Fowler BA, Sanders BM, Van Veld PA (1992) Molecular responses to environmental contamination: enzyme and protein systems as indicators of chemical exposure and effect. In: Huggett RJ, Kimerle RA, Mehrle PM Jr, Bergman HL (eds) Biomarkers. Biochemical, physiological, and histological markers of anthropogenic stress. The SETAC Publication Series Lewis Publishers, Chelsea, pp 235–336Google Scholar
  71. Stoiber T, Bonacker D, Böhm K, Bolt H, Thier R, Degen G, Unger E (2004) Disturbed microtubule function and induction of micronuclei by chelate complexes of mercury (II). Mutat Res 563:97–106CrossRefGoogle Scholar
  72. Sun Y, Yu H, Zhang J, Yin Y, Shen H, Lui H, Wang X (2006) Bioaccumulation and antioxidant responses in goldfish Carassius auratus under HC Orange No. 1 exposure. Ecotoxicol Environ Saf 63:430–437CrossRefGoogle Scholar
  73. Tilton FA, Bammler TK, Gallagher EP (2011) Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately, or as mixtures. Comp Biochem Physiol Part C: Toxicol Pharmacol 153(1):9–16Google Scholar
  74. Udroiu I (2006) The micronucleus test in piscine erythrocytes. Aquat Toxicol 79:201–204CrossRefGoogle Scholar
  75. Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149CrossRefGoogle Scholar
  76. Vassault A (1983) Lactate dehydrogenase. Method Enzym Anal 3:118–126Google Scholar
  77. Wu RSS, Lam PKS (1997) Glucose-6-phosphate dehydrogenase and lactate dehydrogenase in the green-lipped mussel (Perna viridis): possible biomarkers for hypoxia in the marine environment. Wat Res 31:2797–2801CrossRefGoogle Scholar
  78. Yi MQ, Liu HX, Shi XY, Liang P, Gao XW (2006) Inhibitory effects of four carbamate insecticides on acetylcholinesterase of male and female Carassius auratus in vitro. Comp Biochem Physiol C 143:113–116CrossRefGoogle Scholar
  79. Yi X, Ding H, Lu Y, Liu H, Zhang M, Jiang W (2007) Effects of long-term alachlor exposure on hepatic antioxidant defense and detoxifying enzyme activities in crucian carp (Carassius auratus). Chemosphere 68:1576–1581CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. L. Bessa
    • 1
    • 2
  • S. C. Antunes
    • 3
    • 4
  • R. Pereira
    • 3
    • 4
  • F. J. M. Gonçalves
    • 1
    • 2
  • B. Nunes
    • 1
    • 2
  1. 1.Departamento de BiologiaUniversidade de AveiroAveiroPortugal
  2. 2.Centro de Estudos do Ambiente e do Mar (CESAM)Universidade de AveiroAveiroPortugal
  3. 3.Departamento de BiologiaFaculdade de Ciências da Universidade do PortoPortoPortugal
  4. 4.Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR)Universidade do PortoPortoPortugal

Personalised recommendations