Environmental Science and Pollution Research

, Volume 23, Issue 12, pp 12253–12263 | Cite as

Physical properties of particulate matter from animal houses—empirical studies to improve emission modelling

  • Ehab MostafaEmail author
  • Christoph Nannen
  • Jessica Henseler
  • Bernd Diekmann
  • Richard Gates
  • Wolfgang Buescher
Research Article


Maintaining and preserving the environment from pollutants are of utmost importance. Particulate matter (PM) is considered one of the main air pollutants. In addition to the harmful effects of PM in the environment, it has also a negative indoor impact on human and animal health. The specific forms of damage of particulate emission from livestock buildings depend on its physical properties. The physical properties of particulates from livestock facilities are largely unknown. Most studies assume the livestock particles to be spherical with a constant density which can result in biased estimations, leading to inaccurate results and errors in the calculation of particle mass concentration in livestock buildings. The physical properties of PM, including difference in density as a function of particle size and shape, can have a significant impact on the predictions of particles’ behaviour. The aim of this research was to characterize the physical properties of PM from different animal houses and consequently determine PM mass concentration. The mean densities of collected PM from laying hens, dairy cows and pig barns were 1450, 1520 and 2030 kg m−3, respectively, whilst the mass factors were 2.17 × 10−3, 2.18 × 10−3 and 5.36 × 10−3 μm, respectively. The highest mass concentration was observed in pig barns generally followed by laying hen barns, and the lowest concentration was in dairy cow buildings. Results are presented in such a way that they can be used in subsequent research for simulation purposes and to form the basis for a data set of PM physical properties.


Particulate matter Particle density Shape factor Mass factor Mass concentration Livestock buildings 


mF (μg)

Mass factor

ρP (kg m−3)

Particle density


Dynamic shape factor

Pr (m)

Perimeter of the particle matter

A (m2)

Area of the particle matter

η (μPa)



Cunningham correction factor

Vs (m s−1)

Sedimentation velocity

Ss (m)

Sedimentation stroke

St (s)

Sedimentation time

T (°C)

Ambient air temperature

d (m)

Particle diameter

g (m s−2)

Gravitational constant


Transcendental number (3.1415…)


Particulate matter


Particulate matter diameter <2.5 μm


Particulate matter diameter < 10 μm


Total suspended particles



The authors would like to show their appreciation for the financing organizations, Deutsche Forschungsgemeinschaft (DFG), Zentralverband der Deutschen Geflügelwirtschaft (ZDG) and Umweltverträgliche und Standortgerechte Landwirtschaft (USL). We also thank the animal housing owners for giving us the opportunity for achieving this study in their farms.


  1. Aarnink AJA, Ellen HH (2007) Processes and factors affecting dust emissions from livestock production. International Conference How to improve air quality. Maastricht, the NetherlandsGoogle Scholar
  2. Alencar M, Nääs I, Gontijo LA (2004) Respiratory risks in broiler production workers. Braz J Poultry Sci 6(1):23–29Google Scholar
  3. Balonis M, Glasser FP (2009) The density of cement phases. Cem Concr Res 39:733–739CrossRefGoogle Scholar
  4. Beyer LA, Clutsom FG (1978) Density and porosity of oil reservoirs and overlying formations from borehole gravity measurements, Gebo Oil Field, Hot Springs County, Wyoming. Oil and gas investigations chart OC-88, U.S. Geological survey, Reston, Virginia. ISBN: 0607823909Google Scholar
  5. Cambra-López M, Torres AG, Aarnink AJA, Ogink NWM (2011a) Source analysis of fine and coarse particulate matter from livestock houses. Atmos Environ 45:694–707Google Scholar
  6. Cambra-López M, Hermosilla T, Lai HTL, Aarnink AJA, Ogink NWM (2011b) Particulate matter emitted from poultry and pig houses: source identification and quantification. Trans ASABE 54:629–642Google Scholar
  7. Costa A, Guarino M, Navarotto P, Mazzotta V (2007) PM10 emission factor from swine husbandry in northern Italy: application of an accurate measuring methods. International Conference How to improve air quality. Maastricht, the NetherlandsGoogle Scholar
  8. David RS, Jacobson LD, Janni KA (2002) Continuous monitoring of ammonia, hydrogen sulfide and dust emissions from swine, dairy and poultry barns. ASAE Annual International Meeting / CIGR XVth World Congress, Chicago, Illinois, USAGoogle Scholar
  9. DFG (Deutsche Forschungsgemeinschaft) (2015) Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte Mitteilung 51, MAK- und BAT-Werte-Liste. Wiley-VCH Verlagsgesellschaft mbH, Weinheim, DeutschlandGoogle Scholar
  10. DIN-EN 13284–1 (2001) Emissionen aus stationären Quellen, Ermittlung der Staubmassenkonzentration bei geringen Staubkonzentrationen, Teil 1: Manuelles gravimetrisches Verfahren, Kommission Reinhaltung der Luft (KRdL) im VDI und DIN, Deutsches Institut für Normung e.V. 13284–1Google Scholar
  11. Duggal SK (2008) Building materials. 3rd edition. New Age International (P) Ltd., Publishers. ISBN (13): 978-81-224-2975-6.Google Scholar
  12. Eugenija Z, Mustajbegovic J, Schachter EN, Kern J, Rienzi N, Goswami S, Marom Z, Maayani S (1995) Respiratory function in poultry works and pharmacologic characterization of poultry dust extract. Environ Res 70:11–19CrossRefGoogle Scholar
  13. Fischer H, Polikarpov G, Craievich A (2004) Average protein density is a molecular-weight-dependent function. Protein Sci 13:2825–2828CrossRefGoogle Scholar
  14. Golbabaei F, Islami F (2000) Evaluation of workers’ exposure to dust, ammonia and endotoxin in poultry industries at the province of Isfahan, Iran. Ind Health 38:41–46CrossRefGoogle Scholar
  15. Haeussermann A, Hartung E, Costa A, Guarino M, Vranken E, Berckmans D (2007) Estimate particulate emissions by intermittent measurements: a feasibility study. International Conference How to improve air quality. Maastricht, the Netherlands.Google Scholar
  16. Hartung J, Saleh M (2007) Composition of dust and effects on animals. International interdisciplinary conference. Particulate matter in and from agriculture, Braunschweig, GermanyGoogle Scholar
  17. Henseler-Passmann J (2010) Untersuchungen zur Emission und Transmission von Feinstäuben aus Rinderställen. Dissertation. Bonn University, Germany. VDI-MEG-Schrift 490.Google Scholar
  18. Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles, Wiley, ISBN 0-471-19410-7Google Scholar
  19. Horvarth H (1978) Method for the determination of dynamic shape factors of sphere aggregates by measuring the sedimentation velocity in a capacitor. J Aerosol Sci 10:309–315CrossRefGoogle Scholar
  20. Iversen M, Kirychuk S, Drost H, Jacobson L (2000) Human health effects of dust exposure in animal confinement buildings. J Agric Saf Health 6(4):283–288CrossRefGoogle Scholar
  21. Kappos A, Bruckmann P, Eikmann T, Englert N, Heinrich U, Höppe P, Koch E, Metz N, Rauchfuss K, Rombout P, Schabronath J, Schulz-Klemp V, Spallek MF, Wichmann HE, Kreyling WG, Krause GHM (2003) Current literature of air pollution assessing effects on human health. Working-group: “Effects of particulate matter on human health”. Agency: Air Pollution Prevention (VDI and DIN). Umweltmed Forsch Prax 8:257–278Google Scholar
  22. Kocaman B, Esenbuga N, Yildiz A, Laçin E, Macit M (2006) Effect of environmental conditions in poultry houses on the performance of laying hens. Int J Poult Sci 5(1):26–30CrossRefGoogle Scholar
  23. Kock JW (2006) Physical and mechanical properties of chicken feather materials, MS thesis, School of Civil and Environmental Engineering, Georgia Institute of TechnologyGoogle Scholar
  24. Lai HTL, Aarnink AJA, Cambra-López M, Huynh TTT, Parmentier HK, Groot-Koerkamp PWG (2014) Size distribution of airborne particles in animal houses. CIGR Journal. Vol. 16, No.3Google Scholar
  25. Marlier D, Nicks B, Canart B (1993) Résultats des measures de la concentration en poussières dans l’air de 12 porcheries. Ann Med Vet 137:111–115Google Scholar
  26. Merchant JA, Naleway AL, Svendsen ER, Kelly KM, Burmeister LF, Stromquist AM, Taylor CD, Thorne PS, Reynolds SJ, Sanderson WT, Chrischilles EA (2005) Asthma and farm exposures in a cohort of rural Iowa children. Environ Health Perspect 113(3):350–356CrossRefGoogle Scholar
  27. Mohapatra K, Biswal SK (2014) Effect of particulate matter (PM) on plants, climate, ecosystem and human health. Int J Adv Technol Eng Sci 2(4):2348–7550Google Scholar
  28. Mostafa E, Buescher W (2011) Indoor air quality improvement from particle matters for laying hen poultry houses. Biosyst Eng 109:22–36CrossRefGoogle Scholar
  29. Mueller CF, (1999) Arbeitskreis Handbuch der Klimatechnik. Band 1: Grundlagen. Arbeitskreis der Dozenten für Klimatechnik, ISBN 3-7880-7335-7Google Scholar
  30. Nannen C (2007) Staubemissionen aus Schweineställen - Bestimmung von Einflussfaktoren auf die Partikelfreisetzung und deren Zusammensetzung. Dissertation. Bonn University, Germany. VDI-MEG-Schrift 461Google Scholar
  31. Nannen C, Schmitt-Pauksztat G, Büscher W (2005) Microscopic test of dust particles in pig fattening houses. Landtechnik 4:60–61Google Scholar
  32. Pedersen S (1992) Dust and gases. 2nd Report of Working Group Climatization of Animal Houses, CIGR, Faculty of Agricultural Sciences, State University of Ghent, Belgien, 111–147.Google Scholar
  33. Pedersen S, Nonnenmann M, Rautiainen R, Demmers TGM, Banhazi T, Lyngbye M (2000) Dust in pig buildings. J Agric Saf Health 6(4):261–274CrossRefGoogle Scholar
  34. Puma MC, Maghirang RG, Hosni MH, Hagen L (1999) Modeling of dust concentration distribution in a simulated swine room under non-isothermal conditions. Trans ASAE 42(6):1823–1832CrossRefGoogle Scholar
  35. Radon K, Weber C, Iversen M, Danuser B, Pedersen S, Nowak D (2001) Exposure assessment and lung function in pig and poultry farmers. Occup Environ Med 58:405–410CrossRefGoogle Scholar
  36. Redwine JS, Lacey RE, Mukhtar S, Carey JB (2002) Concentration and emissions of ammonia and particulate matter in tunnel-ventilated broiler houses under summer conditions in Texas. Trans ASAE 45(4):1101–1109CrossRefGoogle Scholar
  37. Reiners JJ, Slaga TJ (1983) Effects of tumor promoters on the rate and commitment to terminal differentiation of subpopulations of murine keratinocytes. Cell 32(1):247–255CrossRefGoogle Scholar
  38. Riedler J, Eder W, Oberfeld G, Schreuer M (2000) Austrian children living on a farm have less hay fever, asthma and allergic sensitization. J Clin Exp Allergy 30(2):194–200CrossRefGoogle Scholar
  39. Rosenthal E, Schneider T, Buescher W, Diekmann B (2007) Sedimentation of animal-specific dust particles in livestock houses. Landtechnik 2(62):102–103Google Scholar
  40. Scheuermann H (2004) Persönliche Schutzmaßnahmen. In: Luftgetragene biologische Belastungen und Infektionen am Arbeitsplatz Stall. KTBL-Schrift 436, S. 194–199.Google Scholar
  41. Seedorf J (2004) An emission inventory of livestock-related bioaerosols for Lower Saxony, Germany. Atmos Environ 38:6565–6581CrossRefGoogle Scholar
  42. Seedorf J, Hartung J (2000) Emission of airborne particulates from animal production. Workshop 4 on sustainable animal production. Hannover, GermanyGoogle Scholar
  43. Seedorf J, Hartung J (2002) Stäube und Mikroorganismen in der Tierhaltung, KTBL-Schrift 393, ISBN 3 7843-2145-3.Google Scholar
  44. Takai H, Pedersen S, Johnsen JO, Metz JHM, Koerkamp PWGG, Uenk GH, Phillips VR, Holden MR, Sneath RW, Short JL, White RP, Hartung J, Seedorf J, Schroder M, Linkert KH, Wathes CM (1998) Concentrations and emissions of airborne dust in livestock buildings in Northern Europe. J Agric Eng Res 70(1):59–77CrossRefGoogle Scholar
  45. Takai H, Nekomoto K, Dahl P, Okamoto E, Morita S, Hoshiba S (2002) Ammonia contents and desorption from dusts collected in livestock buildings. Agricultural Engineering International: the CIGR Journal of Scientific Research and Development. Manuscript BC 01 005. Vol. IVGoogle Scholar
  46. Van Wicklen GL, Yoder MF (1988) Respirable particle concentrations in naturally-ventilated broiler housing. Trans ASABE 31(6):1794–1797CrossRefGoogle Scholar
  47. VDI (2002) Verein Deutscher Ingenieure Wärmeatlas, Springer-Verlag, ISBN 3-540-41200-XGoogle Scholar
  48. Winkel A, Mosquera J, van Riel JW, Groot Koerkamp PWG, Ogink NWM, Aarnink AJA (2015) Emissions of particulate matter from animal houses in the Netherlands. Atmos Environ 111:202–212CrossRefGoogle Scholar
  49. Yang X (2010) Physical, chemical and biological properties of airborne particles emitted from animal confinement buildings. Ph.D. dissertation, Agricultural and Biological Engineering department, University of Illinois at Urbana-Champaign, USA.Google Scholar
  50. Yuan J, Flores RA (1996) Laboratory dry-milling performance of white corn: effect of physical and chemical corn characteristics. Cereal Chem 73(5):574–578Google Scholar
  51. Zhang Y, Ghaly AE, Li B (2012) Physical properties of wheat straw varieties cultivated under different climatic and soil conditions in three continents. Am J Eng Appl Sci 5(2):98–106CrossRefGoogle Scholar
  52. Zhu Z, Dong H, Tao X, Xin H (2005) Evaluation of airborne dust concentration and effectiveness of cooling fan with spraying misting systems in swine gestation houses. Proceedings of the seventh international symposium, Beijing, China - ASAE Publication Number 701P0205, ed. T. Brown-Brandl. 224–229Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ehab Mostafa
    • 1
    • 2
    Email author
  • Christoph Nannen
    • 2
  • Jessica Henseler
    • 2
  • Bernd Diekmann
    • 3
  • Richard Gates
    • 4
  • Wolfgang Buescher
    • 2
  1. 1.Agricultural Engineering Department, Faculty of AgricultureCairo UniversityGizaEgypt
  2. 2.Institute for Agricultural EngineeringBonn UniversityBonnGermany
  3. 3.Institute of PhysicsBonn UniversityBonnGermany
  4. 4.Agricultural & Biological EngineeringUniversity of IllinoisUrbanaUSA

Personalised recommendations