Environmental Science and Pollution Research

, Volume 23, Issue 12, pp 11790–11805 | Cite as

Mobilisation processes responsible for iron and manganese contamination of groundwater in Central Adriatic Italy

  • William PalmucciEmail author
  • Sergio Rusi
  • Diego Di Curzio
Research Article


Iron and manganese are two of the most common contaminants that exceed the threshold imposed by international and national legislation. When these contamination occurs in groundwater, the use of the water resource is forbidden for any purposes. Several studies investigated these two metals in groundwater, but research focused in the Central Adriatic area are still lacking. Thus, the objective of this study is to identify the origin of Fe and Mn contamination in groundwater and the hydrogeochemical processes that can enrich aquifers with these metals. This work is based on hydrogeochemical and multivariate statistical analysis of analytical results undertaken on soils and groundwater. Fe and Mn contamination are widespread in the alluvial aquifers, and their distribution is regulated by local conditions (i.e. long residence time, presence of peat or organic-rich fine sediments or anthropic pollution) that control redox processes in the aquifers and favour the mobilisation of these two metals in groundwater. The concentration of iron and manganese identified within soil indicates that the latter are a concrete source of the two metals. Anthropic impact on Fe and Mn contamination of groundwater is not related to agricultural activities, but on the contrary, the contribution of hydrocarbons (e.g. spills) is evident.


Anthropic impact Central Italy Metal mobilisation Natural groundwater contamination Redox processes Statistical analysis 



The authors wish to thank the Regione Abruzzo “Servizio Qualità delle Acque” and the Agenzia Regionale per la Tutela dell’Ambiente (ARTA) – “Progetto Inquinamento Diffuso” for making the groundwater analytical results available. The authors also wish to thank the Agenzia Regionale per i Servizi di Sviluppo Agricolo in Abruzzo (ARSSA) for making the soil analytical results available for this study. The authors are also grateful to reviewers for their comments and suggestions.


  1. Alloway BJ (2013) Heavy metals in soils. Trace metals and metalloids in soil and their bioavailability. Environmental Pollution 22. doi: 10.1007/978-94-007-4470-7
  2. APAT, IRSA-CNR (2003) Metodi analitici per le acque [Analytical methods for water]. Manuali e Linee Guida, 29/2003. Available via dialog:
  3. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. A.A. Balkema Publishers, LaidenCrossRefGoogle Scholar
  4. Atekwana EA, Atekwana E, Legall FD, Krishnamurthy RV (2005) Biodegradation and mineral weathering controls on bulk electrical conductivity in a shallow hydrocarbon contaminated aquifer. J Contam Hydrol 80(3):149–167. doi: 10.1016/j.jconhyd.2005.06.009 CrossRefGoogle Scholar
  5. Belkhiri L, Narany TS (2015) Using Multivariate Statistical Analysis, Geostatistical Techniques and Structural Equation Modeling to Identify Spatial Variability of Groundwater Quality. Water Resour Manag 29(6):2073–2089CrossRefGoogle Scholar
  6. Berbenni P, Pollice A, Canziani R, Stabile L, Nobili F (2000) Removal of iron e manganese from hydrocarbon-contaminated groundwaters. Bioresour Technol 74(2):109–114. doi: 10.1016/S0960-8524(00)00003-1 CrossRefGoogle Scholar
  7. Berner RA (1981) A new geochemical classification of sedimentary environments. J Sediment Res 51(2)Google Scholar
  8. Boni C, Bono P, Capelli G (1986) Schema idrogeologico dell’Italia centrale [Hydrogeological scheme of central Italy]. Mem Soc Geol Ital 35:991–1012Google Scholar
  9. Botes PJ (2004) Investigation of mobility trace elements in river sediments using ICP-OES. University of Pretoria EditionGoogle Scholar
  10. Botes PJ, Van Staden JF (2007) Investigation of trace element mobility in river sediments using ICP-OES. Water SA 31(2):183–192Google Scholar
  11. Bowen HJM (1979) Environmental Chemistry of the Elements, vol 333. Adacemic Press, LondonGoogle Scholar
  12. Bradl H (2005) Heavy metals in the environment: origin, interaction e remediation (Vol. 6). Academic PressGoogle Scholar
  13. Briz-Kishore BH, Murali G (1989) Factor analysis for revealing hydrochemical characteristics of a watershed. Environ Geol 19(1):3–9. doi: 10.1007/BF01740571 Google Scholar
  14. Burri E, Petitta M (2004) Agricultural changes affecting water availability: from abundance to scarcity (Fucino Plain, central Italy). Irrig Drain 53(3):287–299. doi: 10.1002/ird.119 CrossRefGoogle Scholar
  15. Caschetto M, Barbieri M, Galassi DMP, Mastrorillo L, Rusi S, Stoch F, Di Cioccio A, Petitta M (2014) Human alteration of groundwater–surface water interactions (Sagittario River, Central Italy): implication for flow regime, contaminant fate e invertebrate response. Environ Earth Sci 71(4):1791–1807. doi: 10.1007/s12665-013-2584-8 CrossRefGoogle Scholar
  16. Cattel RB (1966) The screen test for the number of factors. Multivar Behav Res 1:245–276. doi: 10.1207/s15327906mbr0102_10 CrossRefGoogle Scholar
  17. Celico P (1983) Idrogeologia dell’Italia centro meridionale [Hydrogeology of central-southern Italy]. Quaderni della Cassa per il Mezzogiorno 4/2Google Scholar
  18. Chen J, Gu B, Royer RA, Burgos WD (2003) The roles of natural organic matter in chemical and microbial reduction of ferric iron. Sci Total Environ 307(1):167–178CrossRefGoogle Scholar
  19. Cornell RM, Schwertmann U (2006) The iron oxides: structure, properties, reactions, occurrences and uses. John Wiley & SonsGoogle Scholar
  20. Desiderio G, Rusi S (2004) Idrogeologia e idrogeochimica delle acque mineralizzate dell’avanfossa abruzzese molisana [Hydrogeology e hydrochemistry of the mineralized waters of the Abruzzo e Molise foredeep (Central Italy)]. Boll Soc Geol Ital 123(3):373–389Google Scholar
  21. Desiderio G, Nanni T, Rusi S (1999) Gli acquiferi delle pianure alluvionali centro adriatiche [The aquifers of the central Adriatic alluvial plains]. Quaderni di Geologia Applicata 2:21–30Google Scholar
  22. Desiderio G, Nanni T, Rusi S (2000) La pianura alluvionale del fiume Pescara (Abruzzo): idrogeologia e vulnerabilità dell’acquifero [The alluvial plain of Pescara river (Abruzzo): hydrogeology and aquifer vulnerability]. Mem Soc Geol Ital 56:197–211Google Scholar
  23. Desiderio G, Nanni T, Rusi S (2002) Idrogeologia e qualità delle acque degli acquiferi della conca intramontana di Sulmona (Abruzzo). Atti I convegno AIGA, 315-342Google Scholar
  24. Desiderio G, Nanni T, Rusi S (2003) La pianura del fiume Vomano (Abruzzo): idrogeologia, antropizzazione e suoi effetti sul depauperamento della falda [The Vomano river plain (Abruzzo-central Italy): hydrogeology, anthropic evolution and its effects on the depletion of the unconfined aquifer]. Boll Soc Geol Ital 122(3):421–434Google Scholar
  25. Desiderio G, Ferracuti L, Rusi S (2007) Structural-Stratigraphic of Middle Adriatic Alluvial Plains e its Control on Quantitative e Qualitative Groundwater Circulation. Mem Descr Carta Geol d’It 76:147–162Google Scholar
  26. Desiderio G, Rusi S, Tatangelo F (2010) Caratterizzazione idrogeochimica delle acque sotterranee abruzzesi e relative anomalie [Hydrogeochemical characterization of Abruzzo groundwaters and relative anomalies]. Ital J Geosci 129(2):207–222. doi: 10.3301/IJG.2010.05 Google Scholar
  27. Desiderio G, D’arcevia CFV, Nanni T, Rusi S (2012) Hydrogeological mapping of the highly anthropogenically influenced Peligna Valley intramontane basin (Central Italy). J Maps 8(2):165–168. doi: 10.1080/17445647.2012.680778 CrossRefGoogle Scholar
  28. Dragon K (2006) Application of factor analysis to study contamination of a semi-confined acquifer (Wielkopolska buried valley acquifer, Poland). J Hydrol 331:272–279. doi: 10.1016/j.jhydrol.2006.05.032 CrossRefGoogle Scholar
  29. EEA - European Environment Agency (2006) Corine Land Cover.
  30. EU - European Union (1998) Direttiva 98/83/CE del Consiglio del 3 novembre 1998 concernente la qualità delle acque destinate al consumo umano. = CELEX:31998L0083
  31. EU – European Union (2000) Direttiva 2000/60/CE, Direttiva 2000/60/CE del Parlamento europeo e del Consiglio, del 23 ottobre 2000, che istituisce un quadro per l’azione comunitaria in materia di acque. = CELEX:32000L0060
  32. EU - European Union (2006) Direttiva 2006/118/CE, pubblicata sulla GU dell’UE il 27.12. 06, recante nuove misure sulla protezione delle acque sotterranee ad integrazione della direttiva quadro 2000/60/CE. = OJ:L:2006:372:0019:0031:IT:PDF
  33. Ferraz HB, Bertolucci PHF, Pereira JS, Lima JGC, Andrade LAF (1988) Chronic exposure to the fungicide maneb may produce symptoms e signs of CNS manganese intoxication. Neurology 38(4):550–553. doi: 10.1212/WNL.38.4.550 CrossRefGoogle Scholar
  34. Fiorillo F, Petitta M, Preziosi E, Rusi S, Esposito L, Tallini M (2015) Long-term trend and fluctuations of karst spring discharge in a Mediterranean area (central-southern Italy). Environ Earth Sci 74:153–172. doi: 10.1007/s12665-014-3946-6 CrossRefGoogle Scholar
  35. Ford RG, Wilkin RT, Puls RW (2007) Monitored natural attenuation of inorganic contaminants in ground water volume 1 - technical basis for assessment. National Risk Management Research Laboratory Office of Research and Development. US Environmental Protection Agency, CincinnatiGoogle Scholar
  36. Furi W, Razack M, Abiye TA, Kebede S, Legesse D (2012) Hydrochemical characterization of complex volcanic aquifer in a continental rifted zone: the Middle Awash basin. Etiopia Hydrogeol J 20:385–400. doi: 10.1007/s10040-011-0807-1 CrossRefGoogle Scholar
  37. Giblin AE (2009) Iron and manganese. in Chief, Encyclopedia of Inland Waters: Elsevier Press, pp 35-44Google Scholar
  38. Gilmour C, Riedel G (2009) Biogeochemistry of Trace Metals e Metalloids. in Chief, Encyclopedia of Inland Waters: Elsevier Press, pp 7-15. doi: 10.1016/B978-012370626-3.00095-8
  39. Grazuleviciene R, Nadisauskiene R, Buinauskiene J, Grazulevicius T (2009) Effects of elevated levels of manganese and iron in drinking water on birth outcomes. Pol J Environ Stud 18(5):819–825Google Scholar
  40. Holliger C, Zehnder AJ (1996) Anaerobic biodegradation of hydrocarbons. Curr Opin Biotechnol 7(3):326–330. doi: 10.1016/S0958-1669(96)80039-5 CrossRefGoogle Scholar
  41. Homoncik SC, MacDonald AM, Heal KV, Dochartaigh BÉÓ, Ngwenya BT (2010) Manganese concentrations in Scottish groundwater. Sci Total Environ 408(12):2467–2473CrossRefGoogle Scholar
  42. Howe PD, Malcolm HM, Dobson S (2004) Manganese and its compounds: environmental aspects. Concise international chemical assessment documentGoogle Scholar
  43. Huang B, Li Z, Chen Z, Chen G, Zhang C, Huang J, Nie X, Xiong W, Zeng G (2015) Study and health risk assessment of the occurrence of iron and manganese in groundwater at the terminal of the Xiangjiang River. Environ Sci Pollut Res 1-10, in pressGoogle Scholar
  44. IR - Italian Republic (2006) Decreto Legislativo 3 Aprile 2006, n. 152.“ Norme in materia ambientale”. Gazzetta Ufficiale Repubblica Italiana n. 88 del 14/06/2006.
  45. IR - Italian Republic (2009) Decreto Legislativo 16 Marzo 2009, n. 30. Attuazione della direttiva 2006/118/CE, relativa alla protezione delle acque sotterranee dall’inquinamento e dal deterioramento. Gazzetta Ufficiale Repubblica Italiana n. n.79 del 4-4-2009.
  46. Jurgens BC, McMahon PB, Chapelle FH, Eberts SM (2009) An Excel workbook for identifying redox processes in ground water. U. S. Geological Survey Open-File Report 2009-1004; USGS: Reston, VAGoogle Scholar
  47. Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrka 23:187–200. doi: 10.1007/BF02289233 CrossRefGoogle Scholar
  48. Kim DM, Yun ST, Kwon MJ, Mayer B, Kim KH (2014) Assessing redox zones e seawater intrusion in a coastal aquifer in South Korea using hydrogeological, chemical e isotopic approaches. Chem Geol 390:119–134. doi: 10.1016/j.chemgeo.2014.10.024 CrossRefGoogle Scholar
  49. Langmuir D, Hall P, Drever J (1997) Environmental Geochemistry. Prentice Hall, New JerseyGoogle Scholar
  50. Lindsay WLM (1991) Iron oxide solubilization by organic matter e its effect on iron availability. In Iron nutrition and interactions in plants. Springer Netherlands, pp 29-36Google Scholar
  51. Lindsay WLM, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, e copper. Soil Sci Soc Am J 42(3):421–428. doi: 10.2136/sssaj1978.03615995004200030009x CrossRefGoogle Scholar
  52. McLean and Bledsoe (1992) McLean JE, Bledsoe BE (1992) Behavior of Metals in Soils. US EPA Ground Water IssueGoogle Scholar
  53. McMahon PB, Chapelle FH (2008) Redox processes e water quality of selected principal aquifer systems. Ground Water 46(2):259–271. doi: 10.1111/j.1745-6584.2007.00385.x CrossRefGoogle Scholar
  54. Mikac N, Cosovic B, Ahel M, Andreis S, Toncic Z (1998) Assessment of groundwater contamination in the vicinity of a municipal solid waste landfill (Zagreb, Croatia). Water Sci Technol 37(8):37–44. doi: 10.1016/S0273-1223(98)00233-9 CrossRefGoogle Scholar
  55. Molinari A, Ayora C, Marcaccio M, Guadagnini L, Sanchez-Vila X, Guadagnini A (2014) Geochemical modeling of arsenic release from a deep natural solid matrix under alternated redox conditions. Environ Sci Pollut Res 21(3):1628–1637CrossRefGoogle Scholar
  56. Nanni T, Rusi S (2003) Idrogeologia del massiccio carbonatico della montagna della Majella (Appennino centrale) [Hydrogeology of the «montagna della majella» carbonate massif (Central Apennines-Italy)]. Boll Soc Geol Ital 122(2):173–202Google Scholar
  57. Nanni T, Vivalda P (1999) Le acque salate dell’Avanfossa marchigiana; origine, chimismo e caratteri strutturali delle zone di emergenza [The salt waters of the Marche foredeep: origin, chemistry and structural characters of the emergency zones]. Boll Soc Geol Ital 118(1):191–215Google Scholar
  58. O’Day PA, Vlassopoulos D, Root R, Rivera N (2004) The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc Natl Acad Sci U S A 101(38):13703–13708CrossRefGoogle Scholar
  59. Palmucci W, Rusi S (2013) Origin and distribution of Iron, Manganese and Boron in the Abruzzo region groundwaters. Hydrogeochemical survey on the Saline sample area. Rend Online Soc Geol Ital 22:222–224Google Scholar
  60. Palmucci W, Rusi S (2014) Boron-rich groundwater in Central Eastern Italy: a hydrogeochemical e statistical approach to define origin e distribution. Environ Earth Sci 72(12):5139–5157. doi: 10.1007/s12665-014-3384-5 CrossRefGoogle Scholar
  61. Palmucci W, Rusi S, Tatangelo F (2016) Ring maps applied to hydrogeological and environmental studies in alluvial aquifers, central Italy. J Maps 12(1):33–44. doi: 10.1080/17445647.2014.977973 CrossRefGoogle Scholar
  62. Pezzetta E, Lutman A, Martinuzzi I, Viola C, Bernardis G, Fuccaro V (2011) Iron concentrations in selected groundwater samples from the lower Friulian Plain, northeast Italy: importance of salinity. Environ Earth Sci 62(2):377–391. doi: 10.1007/s12665-010-0533-3 CrossRefGoogle Scholar
  63. Postma D, Appelo CAJ (2000) Reduction of Mn-oxides by ferrous iron in a flow system: column experiment e reactive transport modeling. Geochim Cosmochim Acta 64(7):1237–1247. doi: 10.1016/S0016-7037(99)00356-7 CrossRefGoogle Scholar
  64. Ritter L, Solomon K, Sibley P, Hall K, Keen P, Mattu G, Linton B (2002) Sources, pathways, e relative risks of contaminants in surface water e groundwater: a perspective prepared for the Walkerton inquiry. J Toxicol Environ Health A 65(1):1–142. doi: 10.1080/152873902753338572 CrossRefGoogle Scholar
  65. Root RA, Vlassopoulos D, Rivera NA, Rafferty MT, Andrews C, O’Day PA (2009) Speciation and natural attenuation of arsenic and iron in a tidally influenced shallow aquifer. Geochim Cosmochim Acta 73(19):5528–5553. doi: 10.1016/j.gca.2009.06.025 CrossRefGoogle Scholar
  66. Rotiroti M, Sacchi E, Fumagalli L, Bonomi T (2014) Origin of Arsenic in Groundwater from the Multilayer Aquifer in Cremona (Northern Italy). Environ Sci Technol 48(10):5395–5403. doi: 10.1021/es405805v CrossRefGoogle Scholar
  67. Roychoudhury AN, Merrett GL (2006) Redox pathways in a petroleum contaminated shallow sandy aquifer: iron e sulfate reductions. Sci Total Environ 366(1):262–274. doi: 10.1016/j.scitotenv.2005.10.024 CrossRefGoogle Scholar
  68. Ruijten MWMM, Sall HJA, Verberk MM, Smink M (1994) Effect of chronic mixed pesticide exposure on peripheral e autonomic nerve function. Arch Environ Health 49(3):188–195CrossRefGoogle Scholar
  69. Schwab AP, Lindsay WL (1983) The effect of redox on the solubility e availability of manganese in a calcareous soil. Soil Sci Soc Am J 47(2):217–220. doi: 10.2136/sssaj1983.03615995004700020008x CrossRefGoogle Scholar
  70. Shacklette HT, Boerngen JG (1984) Element concentrations in soils e other surficial materials of the conterminous United States; Professional Paper 1270; U.S. Geological Survey, United States Printing Office: Washington, DC, 1984; p 103Google Scholar
  71. Tucillo ME, Cozzarelli IM, Herman JH (1999) Iron reduction in the sediments of a hydrocarbon-contaminated aquifer. Appl Geochem 14(5):655–667. doi: 10.1016/S0883-2927(98)00089-4 CrossRefGoogle Scholar
  72. Upadhyaya D, Survaiya MD, Basha S, Mandal SK, Thorat RB, Haldar S, Goel S, Dave H, Baxi K, Trivedi RH, Mody KH (2014) Occurrence and distribution of selected heavy metals and boron in groundwater of the Gulf of Khambhat region, Gujarat, India. Environ Sci Pollut Res 21(5):3880–3890CrossRefGoogle Scholar
  73. Vance D (1994) Iron: the environmental impact of a universal element. Natl Environ J 4(3):24–25Google Scholar
  74. Voudouris K, Lambrakis N, Papatheodorou G, Daskalaki P (1997) An application of factor analysis for the study of the hydrogeological conditions in Plio-Pleistocene aquifers of NW Achaia (NW Peloponnesus, Greece). Math Geol 29(4):43–59. doi: 10.1007/BF02769619 CrossRefGoogle Scholar
  75. Waber UE, Lienert C, Von Gunten HR (1990) Colloid-related infiltration of trace metals from a river to shallow groundwater. J Contam Hydrol 6(3):251–265. doi: 10.1016/0169-7722(90)90020-H CrossRefGoogle Scholar
  76. Wang L, Meng XX, Xu HE (2006) Analysis of causes of superstandard Fe and Mn content in source water of catchment areas in Jiamusi City. Environ Sci Manag 1:053Google Scholar
  77. WHO - World Health Organization (2003) Iron in drinking water. WHO Press, Geneva.
  78. WHO - World Health Organization (2006) Guidelines for drinking-water quality.
  79. WHO - World Health Organization (2011a) Guidelines for drinking-water quality.
  80. WHO - World Health Organization (2011b) Manganese in drinking water. WHO Press,
  81. Yadav IC, Devi NL, Singh S (2015) Reductive dissolution of iron-oxyhydroxides directsgroundwater arsenic mobilization in the upstream of Ganges River basin, Nepal. J Geochem Explor 148:150–160Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • William Palmucci
    • 1
    Email author
  • Sergio Rusi
    • 1
  • Diego Di Curzio
    • 1
  1. 1.Engineering and Geology Department (InGeo)University “G. d’Annunzio” Chieti-PescaraChietiItaly

Personalised recommendations