Environmental Science and Pollution Research

, Volume 24, Issue 13, pp 11879–11889 | Cite as

Exposure assessment of a cyclist to particles and chemical elements

  • C. A. Ramos
  • J. R. Silva
  • T. Faria
  • T. H. Wolterbeek
  • S. M. Almeida
Biomonitoring of atmospheric pollution: possibilities and future challenges


Cycle paths can be used as a route for active transportation or simply to cycle for physical activity and leisure. However, exposure to air pollutants can be boosted while cycling, in urban environments, due to the proximity to vehicular emissions and elevated breathing rates. The objective of this work was to assess the exposure of a cyclist to particles and to chemical elements by combining real-time aerosol mass concentration reading equipment and biomonitoring techniques. PM10 and PM2.5 were measured on three cycle paths located in Lisbon, during weekdays and weekends and during rush hours and off-peak hours resulting in a total of 60 campaigns. Lichens were exposed along cycle paths for 3 months, and their element contents were measured by instrumental neutron activation analysis using the k 0 methodology (k 0-INAA). Using a bicycle commute route of lower traffic intensity and avoiding rush hours or other times with elevated vehicular congestion facilitate a reduction in exposure to pollutants. The implementation of cycle paths in cities is important to stimulate physical activity and active transportation; however, it is essential to consider ambient air and pollutant sources to create safer infrastructures.


Bicycle Particles Biomonitors Chemical elements INAA 



The authors gratefully acknowledge Fundação para a Ciência e Tecnologia (FCT) for funding C.A. Ramos PhD grant (SFRH/BD/79277/2011) and S.M. Almeida contract (IF/01078/2013). C2TN/IST authors gratefully acknowledge the FCT support through the UID/Multi/04349/2013 project.

Supplementary material

11356_2016_6365_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 18 kb)


  1. Almeida SM, Freitas MC, Repolho C, Dionísio I, Dung HM, Caseiro A et al (2009) Characterizing air particulate matter composition and sources in Lisbon, Portugal. J Radioanal Nucl Chem 281(2):215–218. doi: 10.1007/s10967-009-0113-8 CrossRefGoogle Scholar
  2. Almeida SM, Lage J, Freitas MC, Pedro AI, Ribeiro T, Silva AV et al (2012a) Integration of biomonitoring and instrumental techniques to assess the air quality in an industrial area located in the coastal of central Asturias, Spain. J Toxicol Environ Health A 75(22–23):1392–1403. doi: 10.1080/15287394.2012.721173 CrossRefGoogle Scholar
  3. Almeida SM, Silva AV, Freitas MC, Marques AM, Ramos CA et al (2012b) Characterization of dust material emitted during harbour activities by k0-INAA and PIXE. J Radioanal Nucl Chem 291(1):77–82. doi: 10.1007/s10967-011-1279-4 CrossRefGoogle Scholar
  4. Almeida SM, Silva AI, Freitas MC, Dzung HM, Caseiro A, Pio CA (2013) Impact of maritime air mass trajectories on the Western European coast urban aerosol. J Toxicol Environ Health A 76(4–5):252–62. doi: 10.1080/15287394.2013.757201 CrossRefGoogle Scholar
  5. Almeida SM, Silva AV, Sarmento S (2014a) Effects of exposure to particles and ozone on hospital admissions for cardiorespiratory diseases in Setúbal, Portugal. J Toxicol Environ Health A 77:837–848. doi: 10.1080/15287394.2014.887399 CrossRefGoogle Scholar
  6. Almeida SM, Almeida-Silva M, Galinha C, Ramos CA, Lage J et al (2014b) Assessment of the Portuguese k0 -INAA laboratory performance by evaluating internal quality control data. J Radioanal Nucl Chem. doi: 10.1007/s10967-014-2987-3 Google Scholar
  7. Bargagli R (1998) Lichens as biomonitors of airborne trace elements. Trace elements in terrestrial plants: an ecophysiological approach to biomonitoring and biorecovery S. Verlag, Berlim, GermanyGoogle Scholar
  8. Barreto JP (2013) Portuguese road code finally enters the XXI century. Accessed 15 Jan 2015
  9. Bell ML, Ebisu K, Peng RD et al (2008) Seasonal and regional short-term effects of fine particles on hospital admissions in 202 US counties, 1999–2005. Am J Epidemiol 168:1301–1310. doi: 10.1093/aje/kwn252 CrossRefGoogle Scholar
  10. Berghmans P, Bleux N, Int Panis L, Mishra VK, Torfs R, Van Poppel M (2009) Exposure assessment of a cyclist to PM10 and ultrafine particles. Sci Total Environ 407(4):1286–98. doi: 10.1016/j.scitotenv.2008.10.041 CrossRefGoogle Scholar
  11. Bigazzi AY, Figliozzi MA (2014) Review of urban bicyclists’ intake and uptake of traffic-related air pollution. Transp Rev 34(2):221–245. doi: 10.1080/01441647.2014.897772 CrossRefGoogle Scholar
  12. Boogaard H, Borgman F, Kamminga J, Hoek G (2009) Exposure to ultrafine and fine particles and noise during cycling and driving in 11 Dutch cities. Atmos Environ 43(27):4234–4242. doi: 10.1016/j.atmosenv.2009.05.035 CrossRefGoogle Scholar
  13. Calvo AI, Alves C, Castro A, Pont V, Vicente AM, Fraile R (2013) Research on aerosol sources and chemical composition: past, current and emerging issues. Atmos Res 120–121:1–28. doi: 10.1016/j.atmosres.2012.09.021 CrossRefGoogle Scholar
  14. Canha N, Almeida-Silva M, Freitas MC, Almeida SM, Wolterbeek HT (2012) Lichens as biomonitors at indoor environments of primary schools. J Radioanal Nucl Chem 291:123–128. doi: 10.1007/s10967-011-1259-8 CrossRefGoogle Scholar
  15. Canha N, Almeida SM, Freitas MC, Wolterbeek HT (2014) Indoor and outdoor biomonitoring using lichens at urban and rural primary schools. J Toxicol Environ Health A 77(14–16):900–915. doi: 10.1080/15287394.2014.911130 CrossRefGoogle Scholar
  16. Carlisle A, Sharp N (2001) Exercise and outdoor ambient air pollution. Br J Sport Med 35:214–222. doi: 10.1136/bjsm.35.4.214 CrossRefGoogle Scholar
  17. Cole-Hunter T, Morawska L, Stewart I, Jayaratne R, Solomon C (2012) Inhaled particle counts on bicycle commute routes of low and high proximity to motorised traffic. Atmos Environ 61:197–203. doi: 10.1016/j.atmosenv.2012.06.041 CrossRefGoogle Scholar
  18. Cutrufello PT, Smoliga JM, Rundell KW (2012) Small things make a big difference: particulate matter and exercise. Sports Med 42(12):1041–1058. doi: 10.2165/11635170-000000000-00000 CrossRefGoogle Scholar
  19. Diapouli E, Chaloulakou A, Spyrellis N (2008) Indoor and outdoor PM concentrations at a residential environment, in the Athens area. Glob NEST J 10(2):201–208. doi: 10.1177/1420326X06074836 Google Scholar
  20. Dung HM, Freitas MC, Blaauw M, Almeida SM, Dionísio I, Canha NH (2010) Quality control and performance evaluation of k0-based neutron activation analysis at the Portuguese research reactor. Nucl Instrum Methods A 622:392–398. doi: 10.1016/j.nima.2010.04.003 CrossRefGoogle Scholar
  21. Elen B, Peters J, Van Poppel M, Bleux N, Theunis J, Reggente M et al (2013) The Aeroflex: a bicycle for mobile air quality measurements. Sensors 13(1):221–240. doi: 10.3390/s130100221 CrossRefGoogle Scholar
  22. EPA (2011) Exposure Factors Handbook: 2011. National Center for Environmental Assessment, Washington, DC. Accessed 2 Feb 2015
  23. Eurobarometer (2014) Sport and physical activity. Special Eurobarometer 412. European Comission. ISBN: 978-92-79-36836-3. Accessed 15 Jan 2015
  24. Freitas MC, Reis MA, Marques AP, Wolterbeek HT (2000) Dispersion of chemical elements in na industrial environment studied by biomonitoring using Parmelia sulcata. J Radioanal Nucl Chem 244(1):109–113. doi: 10.1023/A:1006739416504 CrossRefGoogle Scholar
  25. Godinho RM (2010) Lichen biomonitors: factors affecting response behaviour. IOS Press, The NetherlandsGoogle Scholar
  26. Han X, Naeher LP (2006) A review of traffic-related air pollution exposure assessment studies in the developing world. Environ Int 32(1):106–120. doi: 10.1016/j.envint.2005.05.020 CrossRefGoogle Scholar
  27. Harmens H, Norris DA, Steinnes E, Kubin E, Piispanen J, Alber R et al (2010) Mosses as biomonitors of atmospheric heavy metal deposition: Spatial patterns and temporal trends in Europe. Environ Pollut 158(10):3144–3156. doi: 10.1016/j.envpol.2010.06.039 CrossRefGoogle Scholar
  28. IARC (2013) Press Release n.° 221. Outdoor air pollution a leading environmental cause of cancer deaths. IARC-WHOGoogle Scholar
  29. Int Panis L, de Geus B, Vandenbulcke G, Willems H et al (2010) Exposure to particulate matter in traffic: a comparison of cyclists and car passengers. Atmos Environ 44(19):2263–2270. doi: 10.1016/j.atmosenv.2010.04.028 CrossRefGoogle Scholar
  30. ISO 17043, Conformity assessment—general requirements for proficiency testing.Google Scholar
  31. Janhäll S (2015) Review on urban vegetation and particle air pollution—deposition and dispersion. Atmos Environ 105:130–137. doi: 10.1016/j.atmosenv.2015.01.052 CrossRefGoogle Scholar
  32. Lage J, Almeida SM, Reis MA, Chaves PC, Ribeiro T et al (2014) Levels and spatial distribution of airborne chemical elements in a heavy industrial area located in the north of Spain. J Toxicol Environ Health A 77(14–16):856–866. doi: 10.1080/15287394.2014.910156 CrossRefGoogle Scholar
  33. Langrish JP, Mills NL, Chan J, Leseman D, Aitken3 RJ, Fokkens P et al (2009) Beneficial cardiovascular effects of reducing exposure to particulate air pollution with a simple facemask. Particle and Fibre Toxicol 6(8). DOI:  10.1186/1743-8977-6-8
  34. Marques AP (2008) Positional responses in lichen transplant biomonitoring of trace element air pollution. IOS Press, The NetherlandsGoogle Scholar
  35. Mason B, Moore CB (1982) Principles of Geochemistry. John Wiley, New JerseyGoogle Scholar
  36. McNamara M, Noonan C, Ward T (2011) Correction factor for continuous monitoring of wood smoke fine particulate matter. Aerosol Air Qual Res 11:315–322. doi: 10.4209/aaqr.2010.08.0072 Google Scholar
  37. Monn C (2001) Exposure assessment of air pollutants: a review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone. Atmos Environ 35(1):1–32. doi: 10.1016/S1352-2310(00)00330-7 CrossRefGoogle Scholar
  38. Nyhan M, McNabola A, Misstear B (2013) Comparison of particulate matter dose and acute heart rate variability response in cyclists, pedestrians, bus and train passengers. Sci Total Environ 468–469:821–831. doi: 10.1016/j.scitotenv.2013.08.096 Google Scholar
  39. Ramos CA, Almeida SM, Wolterbeek HT (2014) Exposure to indoor air pollutants during physical activity in gymnasiums. Build Environ 82:349–360. doi: 10.1016/j.buildenv.2014.08.026 CrossRefGoogle Scholar
  40. Ramos CA, Reis JF, Almeida T, Alves F, Wolterbeek HT, Almeida SM (2015a) Estimating the inhaled dose of pollutants during indoor physical activity. Sci Total Environ 527–528:111–118. doi: 10.1016/j.scitotenv.2015.04.120 CrossRefGoogle Scholar
  41. Ramos CA, Viegas C, Cabo Verde S, Almeida SM, Wolterbeek HT (2015b) Characterizing the fungal and bacterial microflora and concentrations in fitness centres. Indoor Built Environ. doi: 10.1177/1420326X15587954 Google Scholar
  42. Rank J, Folke J, Jespersen PH (2001) Differences in cyclists and car drivers exposure to air pollution from traffic in the city of Copenhagen. Sci Total Environ 279:131–136. doi: 10.1016/S0048-9697(01)00758-6 CrossRefGoogle Scholar
  43. Saelens BE, Sallis JF, Frank LD (2003) Environmental correlates of walking and cycling: findings from the transportation, urban design, and planning literatures. Ann Behav Med 25(2):80–91CrossRefGoogle Scholar
  44. Sarmento S, Wolterbeek HT, Verburg TG, Freitas MC (2008) Correlating element atmospheric deposition and cancer mortality in Portugal: data handling and preliminary results. Environ Pollut 151(2):341–351. doi: 10.1016/j.envpol.2007.06.039 CrossRefGoogle Scholar
  45. Tolis EI, Saraga DE, Filiou KF, Tziavos NI, Tsiaousis CP et al (2014) One-year intensive characterization on PM2.5 nearby port area of Thessaloniki, Greece. Environ Sci Pollut Res 22(9):6812–6826. doi: 10.1007/s11356-014-3883-7 CrossRefGoogle Scholar
  46. Tolis EI, Saraga DE, Lytra MK, Papathanasiou A, Bougaidis PN et al (2015) Concentration and chemical composition of PM2.5 for a one-year period at Thessaloniki, Greece: a comparison between city and port area. Atmos Environ 113:197–207. doi: 10.1016/j.atmosenv.2015.05.014 CrossRefGoogle Scholar
  47. Zanobetti A, Schwartz J (2009) The effect of fine and coarse particulate air pollution on mortality: a national analysis. Environ Health Perspect 117:898–903. doi: 10.1289/ehp.0800108 CrossRefGoogle Scholar
  48. Zhu K, Zhang J, Lioy PJ (2007) Evaluation and comparison of continuous fine particulate matter monitors for measurement of ambient aerosols. J Air Waste Manage Assoc 57(12):1499–1506. doi: 10.3155/1047-3289.57.12.1499 CrossRefGoogle Scholar
  49. Zuurbier M, Hoek G, van den Hazel P, Brunekreef B (2009) Minute ventilation of cyclists, car and bus passengers: an experimental study. Environ Health 8(48). DOI:  10.1186/1476-069X-8-48
  50. Zuurbier M, Hoek G, Oldenwening M, Lenters V, Meliefste K et al (2010) Commuters’ exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environ Health Perspect 118(6):783–789. doi: 10.1289/ehp.0901622 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • C. A. Ramos
    • 1
    • 2
  • J. R. Silva
    • 3
  • T. Faria
    • 1
  • T. H. Wolterbeek
    • 2
  • S. M. Almeida
    • 1
  1. 1.Centro de Ciências e Tecnologias Nucleares, Instituto Superior TécnicoUniversidade de LisboaBobadelaPortugal
  2. 2.Faculty of Applied Sciences, Department of Radiation, Radionuclides and ReactorsTechnical University of DelftDelftThe Netherlands
  3. 3.Faculdade de Ciência e TecnologiaUniversidade Nova de LisboaLisbonPortugal

Personalised recommendations