Advertisement

Selenium catalyzed Fe(III)-EDTA reduction by Na2SO3: a reaction-controlled phase transfer catalysis

  • 548 Accesses

  • 19 Citations

Abstract

Fe(II)-EDTA, a typical chelated iron, is able to coordinate with nitric oxide (NO) which accelerates the rates and kinetics of the absorption of flue gas. However, Fe(II)-EDTA can be easily oxidized to Fe(III)-EDTA which is unable to absorb NO. Therefore, the regeneration of fresh Fe(II)-EDTA, which actually is the reduction of Fe(III)-EDTA to Fe(II)-EDTA, becomes a crucial step in the denitrification process. To enhance the reduction rate of Fe(III)-EDTA, selenium was introduced into the SO3 2−/Fe(III)-EDTA system as catalyst for the first time. By comparison, the reduction rate was enhanced by four times after adding selenium even at room temperature (25 °C). Encouragingly, elemental Se could precipitate out when SO3 2− was consumed up by oxidation to achieve self-separation. A catalysis mechanism was proposed with the aid of ultraviolet–visible (UV–Vis) spectroscopy, Tyndall scattering, horizontal attenuated total reflection Fourier transform infrared (HATR-FTIR) spectroscopy, and X-ray diffraction (XRD). In the catalysis process, the interconversion between SeSO3 2− and nascent Se formed a catalysis circle for Fe(III)-EDTA reduction in SO3 2− circumstance.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

References

  1. Chai L, Yang B, Liu H, Xiang K, Yang S, Peng C (2015) Se-catalyzed process of sodium bisulfite disproportionation. J Chem Technol & Biotech. doi:10.1002/jctb.4675

  2. Cole-Hamilton DJ (2003) Homogeneous catalysis—new approaches to catalyst separation, recovery, and recycling. Science 299:1702–1706. doi:10.1126/science.1081881

  3. Costentin C, Passard G, Robert M, Savéant J-M (2014) Ultraefficient homogeneous catalyst for the CO2-to-CO electrochemical conversion. Proc Natl Acad Sci 111:14990–14994. doi:10.1073/pnas.1416697111

  4. Dijkstra HP, van Klink GPM, van Koten G (2002) The use of ultra- and nanofiltration techniques in homogeneous catalyst recycling. Acc Chem Res 35:798–810. doi:10.1021/ar0100778

  5. Dimitriades B (1972) Effects of hydrocarbon and nitrogen oxides on photochemical smog formation. Environ Sci Technol 6:253–260. doi:10.1021/es60062a003

  6. Dioumaev VK, Bullock RM (2000) A recyclable catalyst that precipitates at the end of the reaction. Nature 424:530–532

  7. Dong X, Zhang Y, Zhou J, Li N, Chen M (2012) Reduction of Fe (III) EDTA in a NOx scrubber liquor by a denitrifying bacterium and the effects of inorganic sulfur compounds on this process. Bioresource Technol 120:127–132. doi:10.1016/j.biortech.2012.06.005

  8. Guo Q, Sun T, Wang Y, He Y, Jia J (2013) Spray absorption and electrochemical reduction of nitrogen oxides from flue gas. Environ Sci Technol 47:9514–9522. doi:10.1021/es401013f

  9. Guo Q, He Y, Sun T, Wang Y, Jia J (2014) Simultaneous removal of NOx and SO2 from flue gas using combined Na2SO3 assisted electrochemical reduction and direct electrochemical reduction. J Hazard Mater 276:371–376. doi:10.1016/j.jhazmat.2014.05.058

  10. Horváth IT, Rábai J (1994) Facile catalyst separation without water: fluorous biphase hydroformylation of olefins. Science 266:72–75. doi:10.1126/science.266.5182.72

  11. Kataby G, Prozorov T, Koltypin Y, Cohen H, Sukenik CN, Ulman A, Gedanken A (1997) Self-assembled monolayer coatings on amorphous iron and iron oxide nanoparticles: thermal stability and chemical reactivity studies. Langmuir 13:6151–6158. doi:10.1021/la960929q

  12. Koh T, Miura Y (1987) Spectrophotometric determination of micro amounts of sulfide, sulfite and thiosulfate. Anal Sci 3:543–547. doi:10.2116/analsci.3.543

  13. Mei J, Yang Y, Xue Y, Lu S (2003) Selective formation of unsymmetric ureas by selenium-catalyzed oxidative–reductive carbonylation with CO. J Mol Catal A-Chem 191:135–139. doi:10.1016/S1381-1169(02)00357-6

  14. Miyata T, Kondo K, Murai S, Hirashima T, Sonoda N (1980) Selenium-catalyzed reduction of aromatic nitro compounds to amines by CO/H2O in the presence of triethylamine. Angew Chem Int Edit 19:1008–1008. doi:10.1002/anie.198010081

  15. Muzio LJ, Quartucy GC, Cichanowiczy JE (2002) Overview and status of post-combustion NOx control: SNCR. SCR and hybrid technologies Int J Environ Pollut 17:4–30. doi:10.1504/IJEP.2002.000655

  16. Ng CHB, Fan WY (2014) Colloidal beading: sonication-induced stringing of selenium particles. Langmuir 30:7313–7318. doi:10.1021/la5012617

  17. Novakov T, Chang S, Harker A (1974) Sulfates as pollution particulates: catalytic formation on carbon (soot) particles. Science 186:259–261. doi:10.1126/science.186.4160.259

  18. Raju T, Chung SJ, Moon IS (2008) Novel process for simultaneous removal of NOx and SO2 from simulated flue gas by using a sustainable Ag (I)/Ag (II) redox mediator. Environ Sci Technol 42:7464–7469. doi:10.1021/es801174k

  19. Ravishankara A, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125. doi:10.1126/science.1176985

  20. Siriwardane RV, Woodruff S (1997) In situ Fourier transform infrared characterization of sulfur species resulting from the reaction of water vapor and oxygen with zinc sulfide. Ind Eng Chem Res 36:5277–5281. doi:10.1021/ie970343e

  21. Sumathi S, Bhatia S, Lee K, Mohamed A (2010) Selection of best impregnated palm shell activated carbon (PSAC) for simultaneous removal of SO2 and NOx. J Hazard Mater 176:1093–1096. doi:10.1016/j.jhazmat.2009.11.037

  22. Wang T, Cheung T, Li Y, Yu X, Blake D (2002) Emission characteristics of CO, NOx, SO2 and indications of biomass burning observed at a rural site in eastern China. J Geophys Res 107(1984–2012):ACH 9-1-ACH 9-10. doi:10.1029/2001JD000724

  23. Wang X, Zhou Z, Jing G (2013) Synthesis of Fe3O4 poly(styrene–glycidyl methacrylate) magnetic porous microspheres and application in the immobilization of Klebsiella sp. FD-3 to reduce Fe(III)EDTA in a NOx scrubbing solution. Bioresource Technol 130:750–756. doi:10.1016/j.biortech.2012.12.010

  24. Yang XJ, Yang L, Dong L, Long XL, Yuan WK (2011) Kinetics of the [Fe(III)-EDTA] reduction by sulfite under the catalysis of activated carbon. Energ Fuel 25:4248–4255. doi:10.1021/ef2006063

  25. Yang XJ, Long XL, Yuan WK (2013) Adsorption characteristics of [Fe (III)–EDTA] on granular activated carbon from aqueous solutions. Environ Prog Sustain 32:470–479. doi:10.1002/ep.11646

  26. Zhang H, Hu Z, Lu K (1995) Transformation from the amorphous to the nanocrystalline state in pure selenium. Nanostruct Mater 5:41–52. doi:10.1016/0965-9773(95)00001-U

  27. Zhang H, Tong H, Wang S, Zhuo Y, Chen C, Xu X (2006) Simultaneous removal of SO2 and NO from flue gas with calcium-based sorbent at low temperature. Ind Eng Chem Res 45:6099–6103. doi:10.1021/ie060340e

  28. Zhang J et al (2014) Simultaneous removal of NO and SO2 from flue gas by ozone oxidation and NaOH absorption. Ind Eng Chem Res 53:6450–6456. doi:10.1021/ie403423p

  29. Zhou Y, Gao L, Xia YF, Li W (2012) Enhanced reduction of Fe (II) EDTA-NO/Fe (III) EDTA in NOx scrubber solution using a three-dimensional biofilm-electrode reactor. Environ Sci Technol 46:12640–12647. doi:10.1021/es3025726

  30. Zhu HS, Mao YP, Yang XJ, Chen Y, Long XL, Yuan WK (2010) Simultaneous absorption of NO and SO2 into Fe-II-EDTA solution coupled with the Fe-II-EDTA regeneration catalyzed by activated carbon. Sep Purif Technol 74:1–6. doi:10.1016/j.seppur.2010.04.012

  31. Zuwei X, Ning Z, Yu S, Kunlan L (2001) Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide. Science 292:1139–1141. doi:10.1126/science.292.5519.1139

Download references

Acknowledgments

The financial support from the National Natural Science Foundation of China (51474246,51404306) and the Key Project of Science and Technology of Hunan Province, China (2013FJ1009) is gratefully acknowledged.

Author information

Correspondence to Hui Liu or Xiaobo Min.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Santiago V. Luis

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 2458 kb)

ESM 1

(DOCX 731 kb)

ESM 2

(MP4 2458 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiang, K., Liu, H., Yang, B. et al. Selenium catalyzed Fe(III)-EDTA reduction by Na2SO3: a reaction-controlled phase transfer catalysis. Environ Sci Pollut Res 23, 8113–8119 (2016). https://doi.org/10.1007/s11356-016-6267-3

Download citation

Keywords

  • Selenium
  • Reaction-controlled phase transfer
  • Catalysis
  • Fe(III)-EDTA reduction
  • Desulfurization and denitrification