Environmental Science and Pollution Research

, Volume 23, Issue 10, pp 9993–10004 | Cite as

Distribution and diversity of biosurfactant-producing bacteria in a wastewater treatment plant

  • Thando Ndlovu
  • Sehaam Khan
  • Wesaal. KhanEmail author
Research Article


The distribution and diversity of culturable biosurfactant-producing bacteria were investigated in a wastewater treatment plant (WWTP) using the Shannon and Simpson’s indices. Twenty wastewater samples were analysed, and from 667 isolates obtained, 32 were classified as biosurfactant producers as they reduced the surface tension of the culture medium (71.1 mN/m), with the lowest value of 32.1 mN/m observed. Certain isolates also formed stable emulsions with diesel, kerosene and mineral oils. The 16S ribosomal RNA (rRNA) analysis classified the biosurfactant producers into the Aeromonadaceae, Bacillaceae, Enterobacteriaceae, Gordoniaceae and the Pseudomonadaceae families. In addition, numerous isolates carried the surfactin 4′-phosphopantetheinyl transferase (sfp), rhamnosyltransferase subunit B (rhlB) and bacillomycin C (bamC) genes involved in the biosynthesis of surfactin, rhamnolipid and bacillomycin, respectively. While, biosurfactant-producing bacteria were found at all sampling points in the WWTP, the Simpson’s diversity (1 − D) and the Shannon-Weaver (H) indices revealed an increase in bacterial diversity in the influent samples (0.8356 and 2.08), followed by the effluent (0.8 and 1.6094) and then the biological trickling filter (0.7901 and 1.6770) samples. Numerous biosurfactant-producing bacteria belonging to diverse genera are thus present throughout a WWTP.


Biosurfactant-producing bacteria Wastewater Shannon’s index Simpson’s index Evenness 



The authors would like to thank the National Research Foundation (Grant number: 90320) for financial support. The authors also wish to thank Mr Vivian Kloppers and the staff members at Stellenbosch municipal wastewater treatment plant for their assistance in the collection of wastewater samples. The Department of Chemistry at Stellenbosch University and Mrs Peta Steyn are thanked for the use of the Du Nouy tensiometer.


  1. Al-Bahry S, Al-Wahaibi Y, Elshafie A, Al-Bemani A, Joshi S, Al-Makhmari H, Al-Sulaimani H (2013) Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. Int Biodeterior Biodegrad 81:141–146CrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  3. Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Fact 8:1–12CrossRefGoogle Scholar
  4. Banat IM (1993) The isolation of a thermophilic biosurfactant producing Bacillus sp. Biotechnol Lett 15:591–594CrossRefGoogle Scholar
  5. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444CrossRefGoogle Scholar
  6. Benincasa M, Abalos A, Oliveira I, Manresa A (2004) Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie Van Leeuwenhoek 85:1–8CrossRefGoogle Scholar
  7. Bento FM, de Oliveira Camargo FA, Okeke BC, Frankenberger WT (2005) Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol Res 160:249–255CrossRefGoogle Scholar
  8. Bodour AA, Miller-Maier RM (1998) Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J Microbiol Methods 32:273–280CrossRefGoogle Scholar
  9. Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69:3280–3287CrossRefGoogle Scholar
  10. Bonmatin J, Laprévote O, Peypoux F (2003) Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb Chem High Throughput Screen 6:541–556CrossRefGoogle Scholar
  11. Chrzanowski Ł, Wick L, Meulenkamp R, Kaestner M, Heipieper H (2009) Rhamnolipid biosurfactants decrease the toxicity of chlorinated phenols to Pseudomonas putida DOT‐T1E. Lett Appl Microbiol 48:756–762Google Scholar
  12. Chrzanowski Ł, Dziadas M, Ławniczak Ł, Cyplik P, Białas W, Szulc A, Lisiecki P, Jeleń H (2012a) Biodegradation of rhamnolipids in liquid cultures: effect of biosurfactant dissipation on diesel fuel/B20 blend biodegradation efficiency and bacterial community composition. Bioresour Technol 111:328–335CrossRefGoogle Scholar
  13. Chrzanowski Ł, Ławniczak Ł, Czaczyk K (2012b) Why do microorganisms produce rhamnolipids? World J Microbiol Biotechnol 28:401–419CrossRefGoogle Scholar
  14. Das P, Mukherjee S, Sen R (2008) Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol 104:1675–1684CrossRefGoogle Scholar
  15. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64Google Scholar
  16. Drury B, Rosi-Marshall E, Kelly JJ (2013) Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers. Appl Environ Microbiol 79:1897–1905CrossRefGoogle Scholar
  17. Dusane DH, Zinjarde SS, Venugopalan VP, Mclean RJ, Weber MM, Rahman PK (2010) Quorum sensing: implications on rhamnolipid biosurfactant production. Biotechnol Genet Eng Rev 27:159–184CrossRefGoogle Scholar
  18. Fakruddin M (2012) Biosurfactant: production and application. J Pet Environ BiotechnolGoogle Scholar
  19. Hashimoto K, Matsuda M, Inoue D, Ike M (2014) Bacterial community dynamics in a full-scale municipal wastewater treatment plant employing conventional activated sludge process. J Biosci Bioeng 118:64–71CrossRefGoogle Scholar
  20. Hsieh F, Li M, Lin T, Kao S (2004) Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Curr Microbiol 49:186–191CrossRefGoogle Scholar
  21. Jousset A, Lara E, Wall LG, Valverde C (2006) Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol 72:7083–7090CrossRefGoogle Scholar
  22. Juwarkar AA, Nair A, Dubey KV, Singh S, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68:1996–2002CrossRefGoogle Scholar
  23. Juwarkar AA, Dubey KV, Nair A, Singh SK (2008) Bioremediation of multi-metal contaminated soil using biosurfactant—a novel approach. Indian J Microbiol 48:142–146CrossRefGoogle Scholar
  24. Kowall M, Vater J, Kluge B, Stein T, Franke P, Ziessow D (1998) Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J Colloid Interface Sci 204:1–8CrossRefGoogle Scholar
  25. Kuiper I, Lagendijk EL, Pickford R, Derrick JP, Lamers GE, Thomas‐Oates JE, Lugtenberg BJ, Bloemberg GV (2004) Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol 51:97–113CrossRefGoogle Scholar
  26. Ławniczak Ł, Marecik R, Chrzanowski Ł (2013) Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 97:2327–2339CrossRefGoogle Scholar
  27. Lazar I, Petrisor I, Yen T (2007) Microbial enhanced oil recovery (MEOR). Pet Sci Technol 25:1353–1366CrossRefGoogle Scholar
  28. Lourith N, Kanlayavattanakul M (2009) Natural surfactants used in cosmetics: glycolipids. Int J Cosmet Sci 31:255–261CrossRefGoogle Scholar
  29. Mandal SM, Barbosa AE, Franco OL (2013) Lipopeptides in microbial infection control: scope and reality for industry. Biotechnol Adv 31:338--345Google Scholar
  30. Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515CrossRefGoogle Scholar
  31. Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198CrossRefGoogle Scholar
  32. Ndlovu T, Le Roux M, Khan W, Khan S (2015) Co-detection of virulent Escherichia coli genes in surface water sources. PLoS One 10:e0116808CrossRefGoogle Scholar
  33. Olapade OA, Ronk AJ (2015) Isolation, characterization and community diversity of indigenous putative toluene-degrading bacterial populations with catechol-2, 3-dioxygenase genes in contaminated soils. Microb Ecol 69:59–65CrossRefGoogle Scholar
  34. Peypoux F, Bonmatin J, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563CrossRefGoogle Scholar
  35. Piljac T, Piljac G (2007) Applying rhamnolipids for cosmetic treatment of wrinklesGoogle Scholar
  36. Piljac A, Stipcevic T, Piljac-Zegarac J, Piljac G (2008) Successful treatment of chronic decubitus ulcer with 0.1% dirhamnolipid ointment. J Cutan Med Surg 12:142–146CrossRefGoogle Scholar
  37. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062CrossRefGoogle Scholar
  38. Ramarathnam R, Bo S, Chen Y, Fernando WD, Xuewen G, De Kievit T (2007) Molecular and biochemical detection of fengycin-and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol 53:901–911CrossRefGoogle Scholar
  39. Rawlings D (1995) Restriction enzyme analysis of 16S rRNA genes for the rapid identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans strains in leaching environments. Biohydrometallurgical Process 2:9–17Google Scholar
  40. Razafindralambo H, Paquot M, Baniel A, Popineau Y, Hbid C, Jacques P, Thonart P (1996) Foaming properties of surfactin, a lipopeptide biosurfactant from Bacillus subtilis. J Am Oil Chem Soc 73:149–151CrossRefGoogle Scholar
  41. Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618CrossRefGoogle Scholar
  42. Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236CrossRefGoogle Scholar
  43. Sen R (2010) Biosurfactants. Springer Science & Business MediaGoogle Scholar
  44. Seydlová G, Svobodová J (2008) Review of surfactin chemical properties and the potential biomedical applications. Cent Eur J Med 3:123–133Google Scholar
  45. Sheppard J, Jumarie C, Cooper D, Laprade R (1991) Ionic channels induced by surfactin in planar lipid bilayer membranes. Biochim Biophys Acta (BBA) Biomembr 1064:13–23CrossRefGoogle Scholar
  46. Shoeb E, Akhlaq F, Badar U, Akhter J, Imtiaz S (2013) Classification and industrial applications of biosurfactants. Acad Res Int 4:243–252Google Scholar
  47. Shon H, Vigneswaran S, Snyder S (2006) Effluent organic matter (EfOM) in wastewater: constituents, effects, and treatment. Crit Rev Environ Sci Technol 36:327–374CrossRefGoogle Scholar
  48. Silva S, Farias C, Rufino R, Luna J, Sarubbo L (2010) Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf B: Biointerfaces 79:174–183CrossRefGoogle Scholar
  49. Soberón-Chávez G, Maier RM (2011) Biosurfactants: a general overview. In: Biosurfactants. Springer, pp 1--11Google Scholar
  50. Stanković S, Mihajlović S, Draganić V, Dimkić I, Vukotić G, Berić T, Fira Đ (2012) Screening for the presence of biosynthetic genes for antimicrobial lipopeptides in natural isolates of Bacillus sp. Arch Biol Sci 64:1425--1432Google Scholar
  51. Stipcevic T, Piljac A, Piljac G (2006) Enhanced healing of full-thickness burn wounds using di-rhamnolipid. Burns 32:24–34CrossRefGoogle Scholar
  52. Tabatabaee A, Assadi MM, Noohi A, Sajadian V (2005) Isolation of biosurfactant producing bacteria from oil reservoirs. Iran J Environ Health Sci Eng 2:6–12Google Scholar
  53. Thavasi R, Sharma S, Jayalakshmi S (2011) Evaluation of screening methods for the isolation of biosurfactant producing marine bacteria. J Pet Environ Biotechnol S 1:2Google Scholar
  54. Tsuge K, Inoue S, Ano T, Itaya M, Shoda M (2005) Horizontal transfer of iturin A operon, itu, to Bacillus subtilis 168 and conversion into an iturin A producer. Antimicrob Agents Chemother 49:4641–4648CrossRefGoogle Scholar
  55. Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects: part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620CrossRefGoogle Scholar
  56. Vollenbroich D, Pauli G, Ozel M, Vater J (1997) Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol 63:44–49Google Scholar
  57. Walter V, Syldatk C, Hausmann R (2010) Screening concepts for the isolation of biosurfactant producing microorganisms. In: Biosurfactants. Springer, pp 1-13Google Scholar
  58. Wang Z, Li K, Fingas M, Sigouin L, Menard L (2002) Characterization and source identification of hydrocarbons in water samples using multiple analytical techniques. J Chromatogr 971:173–184CrossRefGoogle Scholar
  59. Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, McInerney MJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 56:339–347CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Microbiology, Faculty of ScienceStellenbosch UniversityStellenboschSouth Africa
  2. 2.Department of Biomedical Sciences, Faculty of Health and Wellness SciencesCape Peninsula University of TechnologyBellvilleSouth Africa

Personalised recommendations