Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 11, pp 10733–10741 | Cite as

Bacteria-based polythene degradation products: GC-MS analysis and toxicity testing

  • Mohd. Shahnawaz
  • Manisha K. Sangale
  • Avinash B. Ade
Research Article

Abstract

Polythene degradation leads to the production of various by-products depending upon the type of degradation process. The polythene degradation products (PEDP) in the culture supernatant of the two bacteria (Lysinibacillus fusiformis strain VASB14/WL and Bacillus cereus strain VASB1/TS) were analyzed with GC-MS technique. The major by-products in the PEDP in the culture supernatant of L. fusiformis strain VASB14/WL (1,2,3,4 tetra methyl benzene) and B. cereus strain VASB1/TS (1,2,3 trimethyl benzene, 1 ethyl 3,5-dimethyl benzene, 1,4 di methyl 2 ethyl benzene, and dibutyl phthalate) dissolved in diethyl ether were recorded. To assess the environmental applicability of polythene degradation using L. fusiformis strain VASB14/WL and B. cereus strain VASB1/TS at in vitro level. The effect of PEDP produced after 2 months of regular shaking at room temperature on both plants and animal system was studied. No significant decrease in the percent seed germination was recorded with the PEDP of both the bacteria. PEDP produced by L. fusiformis strain VASB14/WL did not report any significant change in germination index (GI) at 10 and 25 %, but least GI (39.66 ± 13.94) was documented at 50 % concentration of PEDP. Highest elongation inhibition rate (53.83 ± 15.71) of Sorghum was also recorded with L. fusiformis and at the same concentration.

Keywords

Polythene degradation products Bacteria GC-MS Sorghum Tiger shark 

Notes

Acknowledgments

This work was a part of the project funded by the Board of College and University Development (BCUD), Savitribai Phule Pune University, Pune. MS is indebted to University Grants Commission-Maulana Azad National Fellowship For Minority (UGC-MANF) for fellowship. MKS is also thankful to University Grants Commission-Basic Science Research (UGC-BSR) for providing the research fellowship.

References

  1. Abrusci C, Pablos JL, Corrales T, López-Marín J, Marín I, Catalina F (2011) Biodegradation of photo-degraded mulching films based on polyethylenes and stearates of calcium and iron as pro-oxidant additives. Int Biodeterior Biodegrad 65:451–459. doi: 10.1016/j.ibiod.2010.10.012 CrossRefGoogle Scholar
  2. Andersson T, Wesslén B, Sandström J (2002) Degradation of low density polyethylene during extrusion. I. Volatile compounds in smoke from extruded films. J Appl Polym Sci 86(7):1580–1586. doi: 10.1002/app.11030 CrossRefGoogle Scholar
  3. Arutchelvi J, Sudhakar M, Arkatkar A, Doble M, Bhaduri S, Uppara PV (2008) Biodegradation of polyethylene and polypropylene. Indian J Biotechnol 7(1):9Google Scholar
  4. Aswale P (2010) PhD thesis, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, IndiaGoogle Scholar
  5. Chitra S, Jayaprakash K (2013) Effect of mercury on blood components of fresh water edible fish Labeo rohita. Hemoglobin (g%) 1(12):774–777Google Scholar
  6. Das MP, Kumar S (2013) Comparative study of germination rate and plant growth by secondary metabolites and in vitro LDPE biodegraded fragments by microbes. Int J Pharm Sci Rev Res 21(2):134–136Google Scholar
  7. Giam CS, Chan HS, Neff GS, Atlas EL (1978) Phthalate ester plasticizers: a new class of marine pollutant. Science 199:419–420. doi: 10.1126/science.199.4327.419-a CrossRefGoogle Scholar
  8. Hakkarainen M, Gröning M, Albertsson AC (2003) Solid‐phase microextraction (SPME) in polymer characterization-Long‐term properties and quality control of polymeric materials. J Appl Polym Sci 89:867–873. doi: 10.1002/app.12310 CrossRefGoogle Scholar
  9. Jain P, Sharma RC, Bhattacharyya P, Banik P (2014) Effect of new organic supplement (Panchgavya) on seed germination and soil quality. Environ Monit Assess 186:1999–2011. doi: 10.1007/s10661-013-3513-8 CrossRefGoogle Scholar
  10. Kyaw BM, Champakalakshmi R, Sakharkar MK, Lim CS, Sakharkar KR (2012) Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian J Microbiol 52:411–419. doi: 10.1007/s12088-012-0250-6 CrossRefGoogle Scholar
  11. Li X, Zeng Z, Chen Y, Xu Y (2004) Determination of phthalate acid esters plasticizers in plastic by ultrasonic solvent extraction combined with solid phase micro extraction using calix [4] arene fiber. Talanta 63:1013–1019. doi: 10.1016/j.talanta.2004.01.006 CrossRefGoogle Scholar
  12. Lithner D (2011) PhD thesis, University of Gothenburg, Göteborg. SwedenGoogle Scholar
  13. Lutzhoft HCH, Waul CK, Andersen HR, Seredynska-Sobecka B, Mosbæk H, Christensen N, Olsson ME, Arvin E (2013) HS-SPME-GC-MS analysis of antioxidant degradation products migrating to drinking water from PE materials and PEX pipes. Int J Environ Anal Chem 93(6):593–612. doi: 10.1080/03067319.2012.727805 CrossRefGoogle Scholar
  14. Mahalakshmi V, Siddiq A, Andrew SN (2012) Analysis of polyethylene degrading potentials of microorganisms isolated from compost soil. Int J Pharm Biol Sci Arch 3(5):1190–1196Google Scholar
  15. Paabo M, Levin BC (1987) A literature review of the chemical nature and toxicity of the decomposition products of polyethylenes. Fire Mater 11(2):55–70CrossRefGoogle Scholar
  16. Pramila R, Ramesh K (2011) Biodegradation of low density polyethylene (LDPE) by fungi isolated from marine water-a SEM analysis. Afr J Microbiol Res 5:5013–5018. doi: 10.5897/AJMR11.670 CrossRefGoogle Scholar
  17. Pramila R, Ramesh KV (2015) Potential biodegradation of low density polyethylene (LDPE) by Acinetobacter baumannii. Afr J Microbiol Res 7(3):24–28. doi: 10.5897/JBR2015.0152 Google Scholar
  18. Sangale MK, Shahnawaz M, Ade AB (2012) A review on biodegradation of polythene: the microbial approach. J Biorem Biodegrad 3:1–9. doi: 10.4172/2155-6199.1000164 CrossRefGoogle Scholar
  19. Sauer D, Burroughs R (1986) Disinfection of seed surfaces with sodium hypochlorite. Phytopathology 76:745–749CrossRefGoogle Scholar
  20. Seneviratne G, Tennakoon N, Weerasekara M, Nandasena K (2006) Polyethylene biodegradation by a developed Penicillium-Bacillus biofilm. Curr Sci 90:20–21Google Scholar
  21. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265. doi: 10.1016/j.biotechadv.2007.12.005 CrossRefGoogle Scholar
  22. Singh B (2005) Harmful effect of plastic in animals. Indian Cow: Sci Econ J 2:10–18Google Scholar
  23. Sivan A, Szanto M, Pavlov V (2006) Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol 72:346–352. doi: 10.1007/s00253-005-0259-4 CrossRefGoogle Scholar
  24. Sojak L, Kubinec R, Jurdakova H, Hájeková E, Bajus M (2006) GC-MS of polyethylene and polypropylene thermal cracking products. Pet Coal 48(1):1–14Google Scholar
  25. Sprague JB (1971) Measurement of pollutant toxicity to fish-III: Sublethal effects and “safe” concentrations. Water Res 5(6):245–266CrossRefGoogle Scholar
  26. Strickland JDH, Parsons TR (1972) Determination of reactive silicate. A Practical Handbook of Seawater Analysis, 65–70Google Scholar
  27. Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Björn A, Rowland SJ, Thompson RC, Galloway TS, Yamashita R, Ochi D, Watanuki Y, Moore C, Viet PH, Tana TS, Prudente M, Boonyatumanond R, Zakaria MP, Akkhavong K, Ogata Y, Hirai H, Iwasa S, Mizukawa K, Hagino Y, Imamura A, Saha M, Takada H (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc B 364:2027–2045. doi: 10.1098/rstb.2008.0284 CrossRefGoogle Scholar
  28. Vandenburg H, Clifford A, Bartle K, Garden L, Dean J, Costley C (1997) Critical review: analytical extraction of additives from polymers. Analyst 122(9):101R–116R. doi: 10.1039/A704052K CrossRefGoogle Scholar
  29. Visioli G, Conti FD, Gardi C, Menta C (2014) Germination and root elongation bioassays in six different plant species for testing Ni contamination in soil. B Environ Contam Toxicol 92:490–496. doi: 10.1007/s00128-013-1166-5 CrossRefGoogle Scholar
  30. Volke‐Sepúlveda T, Saucedo‐Castañeda G, Gutiérrez‐Rojas M, Manzur A, Favela‐Torres E (2002) Thermally treated low density polyethylene biodegradation by Penicillium pinophilum and Aspergillus niger. J Appl Polym Sci 83:305–314. doi: 10.1002/app.2245 CrossRefGoogle Scholar
  31. Wagner M, Oehlmann J (2009) Endocrine disruptors in bottled mineral water: total estrogenic burden and migration from plastic bottles. Environ Sci Pollut Res 16(3):278–286. doi: 10.1007/s11356-009-0107-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of BotanySavitribai Phule Pune UniversityPuneIndia

Personalised recommendations