Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 10, pp 10090–10102 | Cite as

Effects of fullerene (C60), multi-wall carbon nanotubes (MWCNT), single wall carbon nanotubes (SWCNT) and hydroxyl and carboxyl modified single wall carbon nanotubes on riverine microbial communities

  • J. R. Lawrence
  • M. J. Waiser
  • G. D. W. Swerhone
  • J. Roy
  • V. Tumber
  • A. Paule
  • A. P. Hitchcock
  • J. J. Dynes
  • D. R. Korber
Research Article

Abstract

Commercial production of nanoparticles (NP) has created a need for research to support regulation of nanotechnology. In the current study, microbial biofilm communities were developed in rotating annular reactors during continuous exposure to 500 μg L−1 of each nanomaterial and subjected to multimetric analyses. Scanning transmission X-ray spectromicroscopy (STXM) was used to detect and estimate the presence of the carbon nanomaterials in the biofilm communities. Microscopy observations indicated that the communities were visibly different in appearance with changes in abundance of filamentous cyanobacteria in particular. Microscale analyses indicated that fullerene (C60) did not significantly (p < 0.05) impact algal, cyanobacterial or bacterial biomass. In contrast, MWCNT exposure resulted in a significant decline in algal and bacteria biomass. Interestingly, the presence of SWCNT products increased algal biomass, significantly in the case of SWCNT-COOH (p < 0.05) but had no significant impact on cyanobacterial or bacterial biomass. Thymidine incorporation indicated that bacterial production was significantly reduced (p < 0.05) by all nanomaterials with the exception of fullerene. Biolog assessment of carbon utilization revealed few significant effects with the exception of the utilization of carboxylic acids. PCA and ANOSIM analyses of denaturing gradient gel electrophoresis (DGGE) results indicated that the bacterial communities exposed to fullerene were not different from the control, the MWCNT and SWNT-OH differed from the control but not each other, whereas the SWCNT and SWCNT-COOH both differed from all other treatments and were significantly different from the control (p < 0.05). Fluorescent lectin binding analyses also indicated significant (p < 0.05) changes in the nature and quantities of exopolymer consistent with changes in microbial community structure during exposure to all nanomaterials. Enumeration of protozoan grazers showed declines in communities exposed to fullerene or MWCNT but a trend for increases in all SWCNT exposures. Observations indicated that at 500 μg L−1, carbon nanomaterials significantly alter aspects of microbial community structure and function supporting the need for further evaluation of their effects in aquatic habitats.

Keywords

Carbon nanotubes Fullerenes Effects Microbial activity Diversity Metabolism 

Notes

Acknowledgments

This work was funded through Environment Canada’s Chemicals Management Plan. The Canadian Light Source (CLS) is supported by the Natural Sciences and Engineering Research Council of Canada, the National Research Council of Canada, the Canadian Institutes of Health Research, the Province of Saskatchewan, Western Economic Diversification Canada and the University of Saskatchewan.

References

  1. Ajayan PM, Zhou OZ (2001) Applications of carbon nanotubes. Carbon Nanotubes 80:391–425CrossRefGoogle Scholar
  2. Ajayan PM, Charlier JC, Rinzler AG (1999) Carbon nanotubes: from macromolecules to nanotechnology. Proc Natl Acad Sci U S A 96:14199–14200CrossRefGoogle Scholar
  3. Akhavan O, Abdolahad M, Abdi Y, Mohajerzadeh S (2009) Synthesis of titania/carbon nanotubes heterojunction arrays for photoinactivation of E. coli in visible light irradiation. Carbon 47:3280–3287CrossRefGoogle Scholar
  4. Apul OG, Shao T, Zhang S, Karanfil T (2012) Impact of carbon nanotube morphology on phenanthrene adsorption. Environ Toxicol Chem 31(1):73–78CrossRefGoogle Scholar
  5. Arias LR, Yang L (2009) Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 25(5):3003–3012. doi: 10.1021/la802769m
  6. Ball P (2001) Roll up for the revolution. Nature 414:142–144CrossRefGoogle Scholar
  7. Battin TJ, Kammer FVD, Weilhartner A, Ottofuelling S, Hofmann T (2009) Nanostructured TiO2: transport behavior and effects on aquatic microbial communities under environmental conditions. Environ Sci Technol 43:8098–8104CrossRefGoogle Scholar
  8. Bennett SW, Adeleye A, Ji Z, Keller AA (2013) Stability, metal leaching, photoactivity and toxicity in freshwater systems of commercial single wall carbon nanotubes. Water Res 47:4074–4085. doi: 10.1016/j.watres.2012.12.039 CrossRefGoogle Scholar
  9. Boon N, Windt WD, Verstraete W, Top EM (2002) Evaluation of nested PCR DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiol Ecol 39:101–112Google Scholar
  10. Boxall ABA, Chaudhry Q, Sinclair C, Jones A, Aitken R, Jefferson B, Watts C (2007) Current and future predicted environmental exposure to engineered nanoparticles; central science laboratory, department of the environment and rural affairs: London, UKGoogle Scholar
  11. Chae So-R, Hotze EM, Xiao Y, Rose J, Wiesner MR (2010) Comparison of methods for fullerene detection and measurements of reactive oxygen production in cosmetic products. Environ Eng Sci 27:797–804. doi: 10.1089/ees.2010.0103
  12. Chan TS, Nasser F, St-Denis CH, Mandal HS, Ghafari P, Hadjout-Rabi N, Bols CN, Tang XS (2013) Carbon nanotube compared with carbon black: effects on bacterial survival against grazing by ciliates and antimicrobial treatments. Nanotoxicology 7:251–258CrossRefGoogle Scholar
  13. Chen Q, Saltiel C, Manickavasagam S, Schadler LS, Siegel RW, Yang HC (2004) Aggregation behavior of single-walled carbon nanotubes in dilute aqueous suspension. J Colloid Interface Sci 280:91–97CrossRefGoogle Scholar
  14. Chenier MR, Beaumier D, Roy R, Driscoll BT, Lawrence JR, Greer CW (2003) Impact of seasonal variations and nutrient inputs on the cycling of nitrogen and the degradation of hexadecane by replicated river biofilms. Appl Environ Microbiol 69:5170–5177Google Scholar
  15. Chung H, Son Y, Yoon TK, Kim S, Kim W (2011) The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicol Environ Saf 74:569–575CrossRefGoogle Scholar
  16. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  17. Dreher KL (2004) Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 77:3–5CrossRefGoogle Scholar
  18. Dynes JJ, Lawrence JR, Korber DR, Swerhone GDW, Leppard GG, Hitchcock AP (2006a) Quantitative mapping of chlorhexidine in natural river biofilms. Sci Total Environ 369:369–383CrossRefGoogle Scholar
  19. Dynes JJ, Tyliszczak T, Araki T, Lawrence JR, Swerhone GDW, Leppard GG, Hitchcock AP (2006b) Speciation and quantitative mapping of metal species in microbial biofilms using scanning transmission X-ray microscopy. Environ Sci Technol 40:1556–1565CrossRefGoogle Scholar
  20. Fang JS, Lyon DY, Wiesner MR, Dong JP, Alvarez PJJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41:2636CrossRefGoogle Scholar
  21. Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, Alemany LB, Tao YJ, Guo W, Ausman KD, Colvin VL, Hughes JB (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39:4307–4316CrossRefGoogle Scholar
  22. Ghafari P, St-Denis CH, Power ME, Jin X, Tsou V, Mandal HS, Bols NC, Tang XS (2008) Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa. Nat Nanotechnol 3:347–351CrossRefGoogle Scholar
  23. Glucksman E, Bell T, Griffiths RI, Bass D (2010) Closely related protist strains have different grazing impacts on natural bacterial communities. Environ Microbiol 12:3105–3113. doi: 10.1111/j.1462-2920.2010.02283.x CrossRefGoogle Scholar
  24. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–9222CrossRefGoogle Scholar
  25. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2010) Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ Toxicol Chem 29:1036–1048Google Scholar
  26. Goyal D, Zhang XJ, Rooney-Varga JN (2010) Impacts of single-walled carbon nanotubes on microbial community structure in activated sludge. Lett Appl Microbiol 51:428–435Google Scholar
  27. Haak SK, McFeters GA (1982a) Nutritional relationships among microorganisms in an epilithic biofilm community. Microb Ecol 8:115–126CrossRefGoogle Scholar
  28. Haak SK, McFeters GA (1982b) Microbial dynamics of an epilithic mat community in a high alpine stream. Appl Environ Microbiol 43:702–707Google Scholar
  29. Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325Google Scholar
  30. Hitchcock AP (2012) Soft X-ray imaging and spectromicroscopy chapter 22 in volume II of the handbook on nanoscopy, eds. Gustaaf Van Tendeloo, Dirk Van Dyck and Stephen J. Pennycook (Wiley, 2012) pp 745–791Google Scholar
  31. Hitchcock AP (2014) aXis2000 is written in Interactive Data Language (IDL). It is available free for non-commercial use from http://unicorn.mcmaster.ca/aXis2000.html
  32. Hyung H, Fortner JD, Hughes JB, Kim J-H (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41:179–184CrossRefGoogle Scholar
  33. Jackson P, Jacobsen NR, Baun A, Birkedal R, Kuhnel D, Jensen KA, Vogel U, Wallin H (2013) Bioaccumulation and ecotoxicity of carbon Nanotubes. Chemistry Central J 7:154 http://journal.chemistrycentral.com/content/7/1/154
  34. Jacobsen C, Wirick S, Flynn G, Zimba C (2000) Soft X-ray microscopy from image sequences with sub-100 nm spatial resolution. J Microsc 197:173–184CrossRefGoogle Scholar
  35. Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383CrossRefGoogle Scholar
  36. Jones CG, Lawton JH, Shackak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386CrossRefGoogle Scholar
  37. Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673CrossRefGoogle Scholar
  38. Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24:6409–6413CrossRefGoogle Scholar
  39. Kang S, Mauter MS, Elimelech M (2009) Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ Sci Technol 43:2648–2653CrossRefGoogle Scholar
  40. Kaznatcheev KV, Karunakaran C, Lanke UD, Urquhart SG, Obst M, Hitchcock AP (2007) Soft X-ray spectromicroscopy beamline at the CLS: commissioning results. Nucl Instrum Methods Phys Res Sect A 582:96–99CrossRefGoogle Scholar
  41. Kohler AR, Som C, Helland A, Gottschalk F (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod 16(8–9):927–937Google Scholar
  42. Lawrence JR, Swerhone GDW, Neu TR (2000) Design and evaluation of a simple rotating annular reactor for replicated biofilm studies. J Microbiol Methods 42:215–224CrossRefGoogle Scholar
  43. Lawrence JR, Scharf B, Packroff G, Neu TR (2002) Microscale evaluation of the effects of grazing by invertebrates with contrasting feeding modes on river biofilm architecture and composition. Microb Ecol 44:199–207CrossRefGoogle Scholar
  44. Lawrence JR, Chenier M, Roy R, Beaumier D, Fortin N, Swerhone GDW, Neu TR, Greer CW (2004) Microscale and molecular assessment of the impacts of nickel, nutrients and oxygen level on river biofilm communities. Appl Environ Microbiol 70:4326–4339CrossRefGoogle Scholar
  45. Lawrence JR, Swerhone GDW, Wassenaar LI, Neu TR (2005) Effects of selected pharmaceuticals on riverine biofilm communities. Can J Microbiol 51:655–669CrossRefGoogle Scholar
  46. Lawrence JR, Zhu B, Swerhone GDW, Roy J, Wassenaar LI, Topp E, Korber DR (2009) Comparative microscale analysis of the effects of triclosan and triclocarban on the structure and function of river biofilm communities. Sci Total Environ 407:3307–3316CrossRefGoogle Scholar
  47. Lawrence JR, Dynes JJ, Korber DR, Swerhone GDW, Leppard GG, Hitchcock AP (2012) Monitoring the fate of copper nanoparticles in river biofilms using scanning transmission X-ray microscopy (STXM). Chem Geol 329:18–25CrossRefGoogle Scholar
  48. Lawrence JR, Swerhone GDW, Dynes JJ, Hitchcock AP, Korber DR (2016) Complex organic corona formation on carbon nanotubes reduces microbial toxicity by suppressing reactive oxygen species production. Environ Sci Nano. doi: 10.1039/C5EN00229J Google Scholar
  49. Lee BI, Qi L, Copeland T (2005) Nanoparticles for materials design: present and future. J Ceram Process Res 6:31–40Google Scholar
  50. Liu Y, Li J, Qiu X, Burda C (2007) Bactericidal activity of nitrogen doped metal oxide nanocatalysts and the influence of bacterial extracellular polymeric substances (EPS). J Photochem Photobiol A 190(1):94–100CrossRefGoogle Scholar
  51. Long Z, Ji J, Yang K, Lin D, Wu F (2012) Systematic and quantitative investigation of the mechanism of carbon nanotubes' toxicity toward algae. Environ Sci Technol 46:8458–8466CrossRefGoogle Scholar
  52. Lovern SB, Strickler JR, Klaper R (2007) Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx). Environ Sci Technol 41:4465–4470CrossRefGoogle Scholar
  53. Luongo LA, Zhang XJ (2010) Toxicity of carbon nanotubes to the activated sludge process. J Hazard Mater 178:356–362CrossRefGoogle Scholar
  54. Lyon DY, Adams LK, Falkner JC, Alvarez PJJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40:4360–4366. doi: 10.1021/es0603655 CrossRefGoogle Scholar
  55. Lyon DY, Brunet L, Hinkal GW, Wiesner MR, Alvarez PJJ (2008) Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage. Nano Lett 8:1539CrossRefGoogle Scholar
  56. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859CrossRefGoogle Scholar
  57. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453CrossRefGoogle Scholar
  58. Musee N, Thwala M, Nota N (2011) The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. J Environ Monit 13:1164–1183CrossRefGoogle Scholar
  59. Muyzer G, Ramsing NB (1995) Molecular methods to study the organization of microbial communities. Water Sci Technol 32:1–9CrossRefGoogle Scholar
  60. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700Google Scholar
  61. Neal A (2008) What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17(5):362–371CrossRefGoogle Scholar
  62. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  63. Neu TR, Swerhone GDW, Lawrence JR (2001) Assessment of lectin-binding-analysis for in situ detection of glycoconjugates in biofilm systems. Microbiology 147:299–313CrossRefGoogle Scholar
  64. Nyberg L, Turco RF, Nies L (2008) Assessing the impact of nanomaterials on anaerobic microbial communities. Environ Sci Technol 42:1938–1943CrossRefGoogle Scholar
  65. Parry JD (2004) Protozoan grazing of freshwater biofilms. Adv Appl Microbiol 54:167–196CrossRefGoogle Scholar
  66. Petersen EJ, Zhang L, Mattison NT, O’Carroll DM, Whelton AJ, Uddin N, Nguyen T, Huang Q, Henry TB, Holbrook RD, Chen KL (2011) Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ Sci Technol 45:9837–9856CrossRefGoogle Scholar
  67. Rodrigues DF, Elimelech M (2010) Toxic effects of single-walled carbon nanotubes in the development of E. coli biofilm. Environ Sci Technol 44(12):4583–4589. doi: 10.1021/es1005785
  68. Schwab F, Bucheli TD, Lukhele LP, Magrez A, Nowack B, Sigg L, Knauer K (2011) Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ Sci Technol 45:6136–6144CrossRefGoogle Scholar
  69. Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69CrossRefGoogle Scholar
  70. Tong ZH, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of fullerene (C-60) on a soil microbial community. Environ Sci Technol 41:2985–2991CrossRefGoogle Scholar
  71. Tong Z, Bischoff M, Nies LF, Myerm P, Applegate B, Turco RF (2012) Response of soil microorganisms to as-produced and functionalized single-wall carbon nanotubes (SWNTs). Environ Sci Technol 46:13471–13479. doi: 10.1021/es303251r CrossRefGoogle Scholar
  72. Velzeboer I, Hendriks AJ, Ragas AMJ, Van de Meent D (2008) Aquatic ecotoxicity tests of some nanomaterials. Environ Toxicol Chem 27:1942–1947CrossRefGoogle Scholar
  73. Velzeboer I, Kupryianchyk D, Peeters ETHM, Koelmans AA (2011) Community effects of carbon nanotubes in aquatic sediments. Environ Int 37:1126–1130CrossRefGoogle Scholar
  74. Velzeboer I, Peeters ETHM, Koelmans AA (2013) Multiwalled carbon nanotubes at environmentally relevant concentrations affect the composition of benthic communities. Environ Sci Technol 47:7475–7482. doi: 10.1021/es400777j Google Scholar
  75. Weerman E, Van der Geest HG, Van der Meulen MD, Manders EMM, Van de Koppel J, Herman PMJ, Admiraal W (2011) Ciliates as engineers of phototrophic biofilms. Freshw Biol 56:1358–1369CrossRefGoogle Scholar
  76. Wei LP, Thakkar M, Chen YH, Ntim SA, Mitra S, Zhang XY (2010) Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta. Aquat Toxicol 100:194–201CrossRefGoogle Scholar
  77. Wolfaardt GM, Lawrence JR, Headley JV, Robarts RD, Caldwell DE (1994) Microbial exopolymers provide a mechanism for bioaccumulation of contaminants. Microb Ecol 27:279–291CrossRefGoogle Scholar
  78. Yang C, Mamouni J, Tang Y, Yang L (2010) Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26:16013–16019CrossRefGoogle Scholar
  79. Yin Y, Zhang X, Graham J, Luongo L (2009) Examination of purified single-walled carbon nanotubes on activated sludge process using batch reactors. J Environ Sci Health A Tox Hazard Subst Environ Eng 44:661–665Google Scholar
  80. Zhu Y, Zhao Q, Li Y, Cai X, Li W (2006) The interaction and toxicity of multiwalled carbon nanotubes with Stylonychia mytilus. J Nanosci Nanotechnol 6:1357–1364CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • J. R. Lawrence
    • 1
  • M. J. Waiser
    • 1
  • G. D. W. Swerhone
    • 1
  • J. Roy
    • 1
  • V. Tumber
    • 1
  • A. Paule
    • 2
  • A. P. Hitchcock
    • 3
  • J. J. Dynes
    • 4
  • D. R. Korber
    • 5
  1. 1.Environment Canada, National Hydrology Research CentreSaskatoonCanada
  2. 2.Global Institute for Water SecurityUniversity of SaskatchewanSaskatoonCanada
  3. 3.Brockhouse Institute for Materials ResearchMcMaster UniversityHamiltonCanada
  4. 4.Canadian Light SourceUniversity of SaskatchewanSaskatoonCanada
  5. 5.Food and Bioproduct SciencesUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations