Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 11, pp 10665–10678 | Cite as

Are participants in markets for water rights more efficient in the use of water than non-participants? A case study for Limarí Valley (Chile)

  • María Molinos-Senante
  • Guillermo Donoso
  • Ramon Sala-Garrido
Research Article

Abstract

The need to increase water productivity in agriculture has been stressed as one of the most important factors to achieve greater agricultural productivity and sustainability. The main aim of this paper is to investigate whether there are differences in water use efficiency (WUE) between farmers who participate in water markets and farmers who do not participate in them. Moreover, the use of a non-radial data envelopment analysis model allows to compute global efficiency (GE), WUE as well the efficiency in the use of other inputs such as fertilizers, pesticides, energy, and labor. In a second stage, external factors that may affect GE and WUE are explored. The empirical application focuses on a sample of farmers located in Limarí Valley (Chile) where regulated permanent water rights (WR) markets for surface water have a long tradition. Results illustrate that WR sellers are the most efficient in the use of water while non-traders are the farmers that present the lowest WUE. From a policy perspective, significant conclusions are drawn from the assessment of agricultural water productivity in the framework of water markets.

Keywords

Russell measure DEA Water use efficiency Irrigation Permanent water rights market 

Supplementary material

11356_2016_6187_MOESM1_ESM.docx (30 kb)
ESM 1 (DOCX 29 kb)

References

  1. Adamson D, Loch A (2014) Possible negative feedbacks from ‘gold-plating’ irrigation infrastructure. Agric Water Manag 145:134–144CrossRefGoogle Scholar
  2. Alevy J, Cristi O, Melo O (2011) Proyecto Mercado Electrónico del Agua. Innova, ChileGoogle Scholar
  3. Azad MAS, Ancev T (2014) Measuring environmental efficiency of agricultural water use: a Luenberger environmental indicator. J Environ Manage 145:314–320CrossRefGoogle Scholar
  4. Azad MAS, Ancev T, Hernández-Sancho F (2015) Efficient water use for sustainable irrigation industry. Water Resour Manag 29:1683–1696CrossRefGoogle Scholar
  5. Bǎdin L, Daraio C, Simar L (2014) Explaining inefficiency in nonparametric production models: the state of the art. Ann Oper Res 214(1):5–30CrossRefGoogle Scholar
  6. Baležentis T, Kriščiukaitiene I, Baležentis A (2014) A nonparametric analysis of the determinants of family farm efficiency dynamics in Lithuania. Agric Econ 45(5):589–599CrossRefGoogle Scholar
  7. Bardhan PK (1973) Size, productivity, and returns to scale: an analysis of farm-level data in Indian agriculture. J Polit Econ 81(6):1370–1386CrossRefGoogle Scholar
  8. Benito B, Solana J, Moreno M-R (2013) Explaining efficiency in municipal services providers. J Prod Anal 42(3):225–239CrossRefGoogle Scholar
  9. Bjornlund H (2003a) Farmer participation in markets for temporary and permanent water in southeastern Australia. Agric Water Manag 63(1):57–76CrossRefGoogle Scholar
  10. Bjornlund H (2003b) Farmer participation in markets for temporary and permanent water in southeastern Australia. Agric Water Manag 63:57–76CrossRefGoogle Scholar
  11. Bjornlund H (2006) Can water markets assist irrigators managing increased supply risk? Some Australian experiences. Water Int 31(2):221–232CrossRefGoogle Scholar
  12. Brooks R, Harris E (2008) Efficiency gains from water markets: empirical analysis of Watermove in Australia. Agric Water Manag 95(4):391–399CrossRefGoogle Scholar
  13. Carvalho P, Marques RC (2011) The influence of the operational environment on the efficiency of water utilities. J Environ Manage 92(10):2698–2707CrossRefGoogle Scholar
  14. CCG (Centro de Cambio Global) (2009) Presentation: “Políticas públicas para la adaptación a los impactos del cambio climático en la agricultura de riego en Chile central”. Centro de Políticas Públicas Workshop, Pontificia Universidad Católica de ChileGoogle Scholar
  15. Chavas JP (2001) Structural change in agricultural production: economics, technology and policy. In: Gardner B, Rausser G (eds) Handbook in agricultural economics, 1st edn. Elsevier Science, Amsterdam, pp 263–285Google Scholar
  16. Cooper WW, Seiford LM, Tone K (2007) Data envelopment analysis. Springer, New YorkGoogle Scholar
  17. Cristi O, de Azevedo LGT, Baltar A, Vicuña S (2002) Markets for water used for irrigation: an application to the Paloma system of the Limarí, Chile. Washington DC: World Bank-Netherlands Water Partnership Program (BNWPP), Water Rights System WindowGoogle Scholar
  18. Cummings RG, Nercissiantz V (1992) The use of water pricing as a means for enhancing water use efficiency in irrigation: case studies in Mexico and the United States. Nat Resour J 32(4):731–755Google Scholar
  19. Daraio C, Simar L (2005) Introducing environmental variables in nonparametric frontier models: a probabilistic approach. J Prod Anal 24(1):93–121CrossRefGoogle Scholar
  20. De Witte K, Marques RC (2010) Influential observations in frontier models, a robust non-oriented approach to the water sector. Ann Oper Res 181(1):377–392CrossRefGoogle Scholar
  21. Donohew Z (2009) Property rights and western United States water markets. Aust J Agric Resour Econ 53(1):85–103CrossRefGoogle Scholar
  22. Donoso G (2006) Water markets: case study of Chile’s 1981 Water Code. Ciencia e Investigación Agraria 33(2):157–171Google Scholar
  23. Donoso G (2012a) The evolution of water markets in Chile. pp. 111-129. In: Maetsu, J. (ed) Water trading and global water scarcity: international perspectives. RFF PressGoogle Scholar
  24. Donoso G (2012b) The Chilean Water Allocation Mechanism, established in its Water Code of 1981. Deliverable no.: D6.1 of EPI Water Project. Available from: http://www.feem-project.net/epiwater/docs/d32-d6-1/CS30_Chile.pdf
  25. Donoso G, Aldaya M, Cabral De Sousa W Jr, Cai X, Chico D, De Miguel A, Dumont A, Gurovich L, Lautze J, López-Gunn E, Pahlow M, Pascale-Palhares JC, Zarate E (2014) Water efficiency: status and trends, chapter 10. In: Willaarts BA, Garrido A, Llamas MR (eds) Water for food and wellbeing in Latin America and the Caribbean. Social and environmental implications for a globalized economy. Earthscan studies in water resource management. Routledge, Oxon and New York, pp 261–283Google Scholar
  26. El-Wahed MHA, Ali EA (2013) Effect of irrigation systems, amounts of irrigation water and mulching on corn yield, water use efficiency and net profit. Agric Water Manag 120:64–71CrossRefGoogle Scholar
  27. Färe R, Grosskopf S, Lovell CAK (1994) Production frontiers. University Cambridge, CambridgeGoogle Scholar
  28. Fleifle A, Saavedra O, Yoshimura C, Elzeir M, Tawfik A (2014) Optimization of integrated water quality management for agricultural efficiency and environmental conservation. Environ Sci Pollut Res 21(13):8095–8111CrossRefGoogle Scholar
  29. Freebairn J (2005) Principles and issues for effective Australian water markets. In: Bennet J (ed) The evolution of water markets: theory and practice in Australia. New Horizons in Environmental Economics, Edward Elgar, Cheltenham, UKGoogle Scholar
  30. Garrick D, Siebentritt MA, Aylward B, Bauer CJ, Purkey A (2009) Water markets and freshwater ecosystem services: policy reform and implementation in the Columbia and Murray-Darling Basins. Ecol Econ 69(2):366–379CrossRefGoogle Scholar
  31. Garrick D, Whitten SM, Coggan A (2013) Understanding the evolution and performance of water markets and allocation policy: a transaction costs analysis framework. Ecol Econ 88:195–205CrossRefGoogle Scholar
  32. Ghimire N, Griffin RC (2014) The water transfer effects of alternative irrigation institutions. American Journal of Agricultural Economics. 1–21; doi: 10.1093/ajae/aau018
  33. Gómez-Lobo A, Paredes R (2001) Mercados de Derechos de Agua: Reflexiones sobre el proyecto de modificación del Código de Aguas (Water markets: reflections about the draft for the modification of Water Code). Estudios Públicos 82:83–104 (In Spanish) Google Scholar
  34. Grafton RQ et al (2011) An integrated assessment of water markets: a cross-country comparison. Rev Environ Econ Policy 5(2):219–239CrossRefGoogle Scholar
  35. Grosskopf S (1996) Statistical inference and nonparametric efficiency: a selective survey. J Prod Anal 7(2-3):161–176CrossRefGoogle Scholar
  36. Haddad BM (2000) Rivers of gold: designing markets to allocate water in California. Island, Washington, DCGoogle Scholar
  37. Hadjigeorgalis E (2008a) Distributional impacts of water markets on small farmers: is there a safety net? Water Resour Res 44:W10416CrossRefGoogle Scholar
  38. Hadjigeorgalis E (2008b) Managing drought through water markets: farmer preferences in the Rio Grande Basin. J Am Water Resour Assoc 44(3):594–605CrossRefGoogle Scholar
  39. Hadjigeorgalis E (2009) A place for water markets: performance and challenges. Rev Agric Econ 31(1):50–67CrossRefGoogle Scholar
  40. Hallam A (1991) Economies of size and scale in agriculture: an interpretive review of empirical measurement. Rev Agric Econ 13:155–172CrossRefGoogle Scholar
  41. Hung M-F, Shaw D, Chie B-T (2014) Water trading: locational water rights, economic efficiency, and third-party effect. Water 6(3):723–744CrossRefGoogle Scholar
  42. INE (2007) Censo Agropecuario y Forestal 2007 Resultados por Comuna. Available at: http://www.ine.cl/canales/chile_estadistico/censos_agropecuarios/censo_agropecuario_07_comunas.php
  43. Kuehne G, Bjornlund H, Loch A (2010) Why do farmers make non-profit decisions? Report, RIRDC Innovation for rural AustraliaGoogle Scholar
  44. Lilienfeld A, Asmild M (2007) Estimation of excess water use in irrigated agriculture: a data envelopment analysis approach. Agric Water Manag 94(1-3):73–82CrossRefGoogle Scholar
  45. Loch A, Adamson D (2015) Drought and the rebound effect: a Murray–Darling Basin example. Nat Hazards 79(3):1429–1449CrossRefGoogle Scholar
  46. Loch A, Bjornlund H, Wheeler S, Connor J (2012) Allocation trade in Australia: a qualitative understanding of irrigator motives and behaviour. Aust J Agric Resour Econ 56:42–60CrossRefGoogle Scholar
  47. Lozano S, Gutiérrez E (2011) A multiobjective approach to fleet, fuel and operating cost efficiency of European airlines. Comput Ind Eng 61(3):473–481CrossRefGoogle Scholar
  48. Manjunatha AV, Speelman S, Chandrakanth MG, Van Huylenbroeck G (2011) Impact of groundwater markets in India on water use efficiency: a data envelopment analysis approach. J Environ Manage 92(11):2924–2929CrossRefGoogle Scholar
  49. Medal-Bartual A, Molinos-Senante M, Sala-Garrido R (2012) Benchmarking in Spanish seaports: a tool for specialization. International Journal of Transport Economics 39(3):329–348Google Scholar
  50. Ministerio de Energía (2015) Sistema Interconectado Central (SIC). Available at: http://antiguo.minenergia.cl/minwww/opencms/03_Energias/Otros_Niveles/Electricidad/Sistema_Electrico/sic.html
  51. Molinos-Senante M, Sala-Garrido R, Lafuente M (2015a) The role of environmental variables on the efficiency of water and sewerage companies: a case study of Chile. Environ Sci Pollut Res 22(13):10242–10253CrossRefGoogle Scholar
  52. Molinos-Senante M, Maziotis A, Sala-Garrido R (2015b) Assessing the relative efficiency of water companies in the English and welsh water industry: a metafrontier approach. Environmental Science and Pollution Research, (In Press)Google Scholar
  53. Mundlak Y (2005) Economic growth: lessons from two centuries of American agriculture. J Econ Lit 43:989–1024CrossRefGoogle Scholar
  54. Nieuwoudt WL, Armitage RM (2004) Water market transfers in South Africa: two case studies. Water Resour Res 40(9):W09S05CrossRefGoogle Scholar
  55. Njiraini GW, Guthiga PM (2013) Are small-scale irrigators water use efficient? Evidence from Lake Naivasha Basin, Kenya. Environ Manage 52(5):1192–1201CrossRefGoogle Scholar
  56. OECD (2012) Cross country analysis of farm performance. Working Party on Agricultural and Markets, TAD/CA/AMP/WP(2012)20, ParisGoogle Scholar
  57. Olson K, Vu L (2009) Economic efficiency in farm households: trends, explanatory factors, and estimation methods. Agric Econ 40(5):587–599CrossRefGoogle Scholar
  58. Rodríguez Díaz JA, Camacho Poyato E, López Luque R (2004) Applying benchmarking and data envelopment analysis (DEA) techniques to irrigation districts in Spain. Irrig Drain 53(2):135–143CrossRefGoogle Scholar
  59. Rosegrant MW, Binswanger HP (1994) Markets in tradable water rights: potential for efficiency gains in developing country water resource allocation. World Dev 22(11):1613–1625CrossRefGoogle Scholar
  60. Rosegrant MW, Ringler C, Zhu T, Tokgoz S, Bhandary P (2013) Water and food in the bioeconomy: challenges and opportunities for development. Agricultural Economics (United Kingdom) 44(SUPPL1):139–150CrossRefGoogle Scholar
  61. Saver J, Gorton M, Davidova J (2015) Migration and farm technical efficiency: evidence from Kosovo. Agric Econ 46:629–641CrossRefGoogle Scholar
  62. Sheng Y, Zhao S, Nossal K, Zhang D (2015) Productivity and farm size in Australian agriculture: reinvestigating the returns to scale. Aust J Agric Resour Econ 59(1):16–38CrossRefGoogle Scholar
  63. Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, Portmann FT (2010) Groundwater use for irrigation—a global inventory. Hydrol Earth Syst Sci 14(10):1863–1880CrossRefGoogle Scholar
  64. Simar L, Wilson PW (2007) Estimation and inference in two-stage, semi-parametric models of production processes. J Econ 136(1):31–64CrossRefGoogle Scholar
  65. Speelman S, D’Haese M, Buysse J, D’Haese L (2008) A measure for the efficiency of water use and its determinants, a case study of small-scale irrigation schemes in North-West Province, South Africa. Agr Syst 98(1):31–39CrossRefGoogle Scholar
  66. Townsend RF, Kirsten J, Vink N (1998) Farm size, productivity and returns to scale in agriculture revisited: a case study of wine producers in South Africa. Agric Econ 19(1–2):175–180CrossRefGoogle Scholar
  67. Vicuña S, Alvarez P, Melo O, Dale L, Meza F (2014) Irrigation infrastructure development in the Limarí Basin in Central Chile: implications for adaptation to climate variability and climate change. Water Int 39(5):620–634CrossRefGoogle Scholar
  68. Wheeler S, Bjornlund H, Shanahan M, Zuo A (2009) Who trades water allocations? Evidence of the characteristics of early adopters in the Goulburn–Murray Irrigation District, Australia 1998–1999. Agric Econ 40:631–643CrossRefGoogle Scholar
  69. Wheeler S, Bjornlund H, Zuo A, Shanahan M (2010) The changing profile of water traders in the Goulburn-Murray Irrigation District, Australia. Agric Water Manag 97:1333–1343CrossRefGoogle Scholar
  70. Wheeler S, Zuo A, Bjornlund H, Lane Miller C (2012) Selling the farm silver? Understanding water sales to the Australian government. Environ Resource Econ 52:133–154CrossRefGoogle Scholar
  71. Wheeler SA, Zuo A, Loch A (2015) Watering the farm: comparing organic and conventional irrigation water use in the Murray-Darling Basin, Australia. Ecol Econ 112:78–85CrossRefGoogle Scholar
  72. Yilmaz B, Yurdusev MA, Harmancioglu NB (2009) The assessment of irrigation efficiency in Buyuk Menderes Basin. Water Resour Manag 23(6):1081–1095CrossRefGoogle Scholar
  73. Zhou P, Poh KL, Ang BW (2007) A non-radial DEA approach to measuring environmental performance. Eur J Oper Res 178:1–9CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • María Molinos-Senante
    • 1
    • 2
    • 3
  • Guillermo Donoso
    • 4
  • Ramon Sala-Garrido
    • 5
  1. 1.Departamento de Ingeniería Hidráulica y AmbientalPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Instituto de Estudios Urbanos y Territoriales, Pontificia Universidad Católica de ChileSantiagoChile
  3. 3.Centro de Desarrollo Urbano Sustentable CONICYT/FONDAP/15110020SantiagoChile
  4. 4.Departamento de Economía AgrariaPontificia Universidad Católica de ChileSantiagoChile
  5. 5.Department of Mathematics for EconomicsUniversity of ValenciaValenciaSpain

Personalised recommendations