Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 9, pp 8589–8597 | Cite as

Long-term effect of nitrate on Cr(VI) removal by Fe0: column studies

  • Minghai Wei
  • Fang Yuan
  • Guoxin Huang
  • Honghan Chen
  • Fei LiuEmail author
Research Article

Abstract

Lab-scale parallel continuous-flow column experiments were performed to assess the long-term effect of nitrate (NO3 ) on hexavalent chromium (Cr(VI)) removal by scrap iron (Fe0). The first column (L1) was fed with the Cr(VI) solution and the second column (L2) was loaded with the Cr(VI) + NO3 solution. Raman spectroscopy and scanning electron microscopy energy-dispersive X-ray analyses (SEM-EDS) were conducted to investigate the changes of the iron oxides on Fe0. The results showed that the process of Cr(VI) removal by Fe0 was divided into three different stages in the presence of NO3 : inhibition period (<198 pore volumes (PVs)); promotion period (198∼1025 PVs); and complete passivation period (1025∼1300 PVs). During the 462∼1025 PVs, Cr(VI) removal capacity in L2 was about 2.5 times higher than that in L1, and the longevity of L2 than L1 was 275PVs longer. NO3 exhibited the most dominant effect on the Cr(VI) removal by Fe0 in the last two stages. New magnetite (Fe3O4) produced by the redox reaction of NO3 and Fe0 was discovered on the surface of the Fe0 obtained from L2. The new generated Fe3O4 could directly reduce the Cr(VI) and could also act as an inhibitor for the formation of passive film on the Fe0 surface as well as an electron mediator that facilitated electron transport from Fe0 to adsorbed Cr(VI).

Keywords

Scrap iron (Fe0Nitrate (NO3Hexavalent chromium (Cr(VI)) Long-term effect Magnetite (Fe3O4Column studies 

Notes

Acknowledgements

This study is financially supported by China Geological Survey (1212011121173).

References

  1. Blowes DW, Ptacek CJ, Jambor JL (1997) In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: laboratory studies. Environ Sci Technol 31:3348–3357. doi: 10.1021/es960844b CrossRefGoogle Scholar
  2. Blowes DW, Ptacek CJ, Benner SG, McRae CWT, Bennett TA, Puls RW (2000) Treatment of inorganic contaminants using permeable reactive barriers1. J Contam Hydrol 45:123–137. doi: 10.1016/S0169-7722(00)00122-4 CrossRefGoogle Scholar
  3. Cho D-W, Song H, Schwartz FW, Kim B, Jeon B-H (2015) The role of magnetite nanoparticles in the reduction of nitrate in groundwater by zero-valent iron. Chemosphere 125:41–49. doi: 10.1016/j.chemosphere.2015.01.019 CrossRefGoogle Scholar
  4. Chowdhury SR, Yanful EK, Pratt AR (2012) Chemical states in XPS and Raman analysis during removal of Cr(VI) from contaminated water by mixed maghemite-magnetite nanoparticles. J Hazard Mater 235:246–256. doi: 10.1016/j.jhazmat.2012.07.054 CrossRefGoogle Scholar
  5. Crean DE, Coker VS, van der Laan G, Lloyd JR (2012) Engineering biogenic magnetite for sustained Cr(VI) remediation in flow-through systems. Environ Sci Technol 46:3352–3359. doi: 10.1021/es2037146 CrossRefGoogle Scholar
  6. deFaria DLA, Silva SV, deOliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878. doi: 10.1002/(sici)1097-4555(199711)28:11<873::aid-jrs177>3.0.co;2-b CrossRefGoogle Scholar
  7. Dhakal P, Matocha CJ, Huggins FE, Vandiviere MM (2013) Nitrite reactivity with magnetite. Environ Sci Technol 47:6206–6213. doi: 10.1021/es304011w Google Scholar
  8. Dutta R, Mohammad SS, Chakrabarti S, Chaudhuri B, Bhattacharjee S, Dutta BK (2010) Reduction of hexavalent chromium in aqueous medium with zerovalent iron. Water Environ Res 82:138–146. doi: 10.2175/106143009x426013 CrossRefGoogle Scholar
  9. Field EK, Gerlach R, Viamajala S, Jennings LK, Peyton BM, Apel WA (2013) Hexavalent chromium reduction by Cellulomonas sp strain ES6: the influence of carbon source, iron minerals, and electron shuttling compounds. Biodegradation 24:437–450. doi: 10.1007/s10532-012-9600-7 CrossRefGoogle Scholar
  10. Fruchter JS et al (2000) Creation of a subsurface permeable treatment zone for aqueous chromate contamination using in situ redox manipulation ground. Water Monitor Remed 20:66–77. doi: 10.1111/j.1745-6592.2000.tb00267.x CrossRefGoogle Scholar
  11. Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205. doi: 10.1016/j.jhazmat.2013.12.062 CrossRefGoogle Scholar
  12. Fuller SJ, Stewart DI, Burke IT (2013) Chromate reduction in highly alkaline groundwater by Zerovalent iron: implications for its use in a permeable reactive barrier. Ind Eng Chem Res 52:4704–4714. doi: 10.1021/ie302914b CrossRefGoogle Scholar
  13. Greven M et al (2007) The impact of CCA-treated posts in vineyards on soil and ground water. Water Sci Technol 56:161–168. doi: 10.2166/wst.2007.485 CrossRefGoogle Scholar
  14. Hanesch M (2009) Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys J Int 177:941–948. doi: 10.1111/j.1365-246X.2009.04122.x CrossRefGoogle Scholar
  15. Hansen HCB, Koch CB (1998) Reduction of nitrate to ammonium by sulphate green rust: activation energy and reaction mechanism. Clay Miner 33:87–101. doi: 10.1180/000985598545453 CrossRefGoogle Scholar
  16. Hansen HCB, Koch CB, Nancke-Krogh H, Borggaard OK, Sørensen J (1996) Abiotic nitrate reduction to ammonium: key role of green rust. Environ Sci Technol 30:2053–2056. doi: 10.1021/es950844w CrossRefGoogle Scholar
  17. He YT, Traina SJ (2005) Cr(VI) reduction and immobilization by magnetite under alkaline pH conditions: the role of passivation. Environ Sci Technol 39:4499–4504. doi: 10.1021/es0483692 CrossRefGoogle Scholar
  18. Hu J, Chen G, Lo IMC (2005) Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res 39:4528–4536. doi: 10.1016/j.watres.2005.05.051 CrossRefGoogle Scholar
  19. Kendelewicz T, Liu P, Doyle CS, Brown GE (2000) Spectroscopic study of the reaction of aqueous Cr(VI) with Fe3O4(111) surfaces. Surf Sci 469:144–163. doi: 10.1016/s0039-6028(00)00808-6 CrossRefGoogle Scholar
  20. Lai KCK, Lo IMC (2008) Removal of chromium (VI) by acid-washed zero-valent iron under various groundwater geochemistry conditions. Environ Sci Technol 42:1238–1244. doi: 10.1021/es071572n CrossRefGoogle Scholar
  21. Lee T, Lim H, Lee Y, Park JW (2003) Use of waste iron metal for removal of Cr(VI) from water. Chemosphere 53:479–485. doi: 10.1016/s0045-6535(03)00548-4 CrossRefGoogle Scholar
  22. Leland JK, Bard AJ (1987) Photochemistry of colloidal semiconducting iron oxide polymorphs. J Phys Chem 91:5076–5083. doi: 10.1021/j100303a039 CrossRefGoogle Scholar
  23. Lo IMC, Lam CSC, Lai KCK (2005) Competitive effects of trichloroethylene on Cr(VI) removal by zero-valent iron. J Environ Engineering-Asce 131:1598–1606. doi: 10.1061/(asce)0733-9372(2005)131:11(1598) CrossRefGoogle Scholar
  24. Lv X, Xu J, Jiang G, Tang J, Xu X (2012) Highly active nanoscale zero-valent iron (nZVI)–Fe3O4 nanocomposites for the removal of chromium(VI) from aqueous solutions. J Colloid Interface Sci 369:460–469. doi: 10.1016/j.jcis.2011.11.049 CrossRefGoogle Scholar
  25. Lv G, Li Z, Jiang W-T, Ackley C, Fenske N, Demarco N (2014) Removal of Cr(VI) from water using Fe(II)-modified natural zeolite. Chem Eng Res Des 92:384–390. doi: 10.1016/j.cherd.2013.08.003 CrossRefGoogle Scholar
  26. Moura FCC, Araujo MH, Costa RCC, Fabris JD, Ardisson JD, Macedo WAA, Lago RM (2005) Efficient use of Fe metal as an electron transfer agent in a heterogeneous Fenton system based on Fe0/Fe3O4 composites. Chemosphere 60:1118–1123. doi: 10.1016/j.chemosphere.2004.12.076 CrossRefGoogle Scholar
  27. Rivero-Huguet M, Marshall WD (2010) Impact of various inorganic oxyanions on the removal rates of hexavalent chromium mediated by zero-valent iron. Environ Chem 7:250–258. doi: 10.1071/en09094 CrossRefGoogle Scholar
  28. Roh Y, Lee SY, Elless MP (2000) Characterization of corrosion products in the permeable reactive barriers. Environ Geol 40:184–194CrossRefGoogle Scholar
  29. Suzuki T, Moribe M, Oyama Y, Niinae M (2012) Mechanism of nitrate reduction by zero-valent iron: equilibrium and kinetics studies. Chem Eng J 183:271–277. doi: 10.1016/j.cej.2011.12.074 CrossRefGoogle Scholar
  30. Thibeau RJ, Brown CW, Heidersbach RH (1978) Raman spectra of possible corrosion products of iron. Appl Spectrosc 32:532–535CrossRefGoogle Scholar
  31. Ton S-S et al (2015) Effects of reductants on phytoextraction of chromium (VI) by ipomoea aquatica. Int J Phytoremediation 17:429–436. doi: 10.1080/15226514.2014.910173 CrossRefGoogle Scholar
  32. Wang P, Lo IMC (2009) Synthesis of mesoporous magnetic γ-Fe2O3 and its application to Cr(VI) removal from contaminated water. Water Res 43:3727–3734. doi: 10.1016/j.watres.2009.05.041 CrossRefGoogle Scholar
  33. Wang P, Ma Y, Wang C, Zhang S, Cheng S (2015) Isolation and characterization of heavy metal-resistant bacterias capable of removing Cr(VI). Pol J Environ Stud 24:339–345Google Scholar
  34. Watts MP, Coker VS, Parry SA, Pattrick RAD, Thomas RAP, Kalin R, Lloyd JR (2015) Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue. Appl Geochem 54:27–42. doi: 10.1016/j.apgeochem.2014.12.001 CrossRefGoogle Scholar
  35. Westerhoff P, James J (2003) Nitrate removal in zero-valent iron packed columns. Water Res 37:1818–1830. doi: 10.1016/s0043-1354(02)00539-0 CrossRefGoogle Scholar
  36. Wilkin RT, Su CM, Ford RG, Paul CJ (2005) Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier. Environ Sci Technol 39:4599–4605. doi: 10.1021/es050157x CrossRefGoogle Scholar
  37. Wu Y, Zhang J, Tong Y, Xu X (2009) Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles. J Hazard Mater 172:1640–1645. doi: 10.1016/j.jhazmat.2009.08.045 CrossRefGoogle Scholar
  38. Yang GCC, Lee HL (2005) Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Res 39:884–894. doi: 10.1016/j.watres.2004.11.030 CrossRefGoogle Scholar
  39. Yoon I-H, Bang S, Chang J-S, Kim MG, Kim K-W (2011) Effects of pH and dissolved oxygen on Cr(VI) removal in Fe(0)/H2O systems. J Hazard Mater 186:855–862. doi: 10.1016/j.jhazmat.2010.11.074 CrossRefGoogle Scholar
  40. Zhang J, Zhang G, Zheng K, Cai D, Wu Z (2015) Reduction of Cr(VI) by urea-dispersed nanoscale zero-valent Iron. J Nanosci Nanotechnol 15:6103–6107. doi: 10.1166/jnn.2015.10295 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Minghai Wei
    • 1
  • Fang Yuan
    • 2
  • Guoxin Huang
    • 3
  • Honghan Chen
    • 1
  • Fei Liu
    • 1
    Email author
  1. 1.Beijing Key Laboratory of Water Resources and Environmental EngineeringChina University of Geosciences (Beijing)BeijingChina
  2. 2.Beijing Z. D. H. K. Environmental Science and Technology Co., LtdBeijingChina
  3. 3.Beijing Key Laboratory of Meat Processing TechnologyChina Meat Research CenterBeijingChina

Personalised recommendations