Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 9, pp 8577–8588 | Cite as

Assessment of exposure to mixture pollutants in Mexican indigenous children

  • R. Flores-Ramírez
  • F. J. Pérez-Vázquez
  • V. G. Cilia-López
  • B. A. Zuki-Orozco
  • L. Carrizales
  • L. E. Batres-Esquivel
  • A. Palacios-Ramírez
  • F. Díaz-BarrigaEmail author
Research Article

Abstract

The aim of the present work was to complete an exposure assessment in three Mexican indigenous communities using the community-based health risk assessment, which is the first step in the CHILD framework. We used 1-hydroxypyrene (1-OHP) as an exposure biomarker to polycyclic aromatic hydrocarbons (PAHs) and trans, trans-muconic acid (t,t-MA) as an exposure biomarker to benzene, persistent organic pollutants (POPs), lead, manganese, arsenic, and fluoride. Anthropometric measurements were also taken. In these communities, high percentages of children with chronic malnutrition were found (28 to 49 %) based on their weight and age. All communities showed a high percentage of children with detectable levels of four or more compounds (70 to 82 %). Additionally, our results showed that in indigenous communities, children are exposed to elevated levels of certain environmental pollutants, including manganese with 17.6, 16.8, and 7.3 μg/L from SMP, TOC, and CUA, respectively. Lead and HCB levels were similar in the indigenous communities (2.5, 3.1, and 4.2 μg/dL and 2.5, 3.1, and 3.7 ng/mL, respectively). 1-OHP and t,t-MA levels were higher in TOC (0.8 μmol/mol of creatinine, 476 μg/g of creatinine, respectively) when compared with SMP (0.1 μmol/mol of creatinine, 215.5 μg/g of creatinine, respectively) and CUA (0.1 μmol/mol of creatinine, 185.2 μg/g of creatinine, respectively). DDE levels were 30.7, 26.9, and 9.6 ng/mL in CUA, SMP, and TOC, respectively. The strength of this study is that it assesses exposure to pollutants with indications for the resultant risk before an intervention is made by the CHILD program to manage this risk in the indigenous communities. Considering the large number of people, especially children, exposed to multiple pollutants, it is important to design effective intervention programs that reduce exposure and the resultant risk in the numerous indigenous communities in Mexico.

Keywords

Exposure Pollutants Children Indigenous 

Notes

Acknowledgment

The authors acknowledge grants and fellowships from National Council for Science and Technology sectorial funds SS/IMSS/ISSSTE-CONACYT (#234111).

References

  1. ACGIH (2005) Threshold limit values for chemical substances and physical agents and biological exposure indices. American Conference of Governmental Industrial Hygienists, CincinnatiGoogle Scholar
  2. Aelion CM, Davis HT, Lawson AB, Cai B, McDermott S (2013) Associations between soil lead concentrations and populations by race/ethnicity and income-to-poverty ratio in urban and rural areas. Environ Geochem Hlth 35:1–12CrossRefGoogle Scholar
  3. ATSDR (2012) Toxicological profile for manganese. Center of Diseases ControlGoogle Scholar
  4. Bach PB, Kelley MJ, Tate RC, McCrory DC (2003) Screening for lung cancer: a review of the current literature. Chest 123:72S–82SCrossRefGoogle Scholar
  5. Bhang SY, Cho SC, Kim JW, Hong YC, Shin MS, Yoo HJ, Cho IH, Kim Y, Kim BN (2013) Relationship between blood manganese levels and children’s attention, cognition, behavior, and academic performance--a nationwide cross-sectional study. Environ Res 126:9--16Google Scholar
  6. Bellinger DC (2008) Neurological and behavioral consequences of childhood lead exposure. PLoS Med 5:e115CrossRefGoogle Scholar
  7. Berghuis SA, Bos AF, Sauer PJ, Roze E (2015) Developmental neurotoxicity of persistent organic pollutants: an update on childhood outcome. Arch Toxicol 89:687–709CrossRefGoogle Scholar
  8. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, Ezzati M, Grantham-McGregor S, Katz J, Martorell R, Uauy R, Maternal, Child Nutrition Study G (2013) Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382:427–51CrossRefGoogle Scholar
  9. Boffetta P, Jourenkova N, Gustavsson P (1997) Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer causes & control : CCC 8:444–72CrossRefGoogle Scholar
  10. Boogaard PJ, Vansittert NJ (1995) Biological monitoring of exposure to benzene—a comparison between S-phenylmercapturic acid, trans, trans-muconic acid, and phenol. Occup Environ Med 52:611–620CrossRefGoogle Scholar
  11. Calderon J, Navarro ME, Jimenez-Capdeville ME, Santos-Diaz MA, Golden A, Rodriguez-Leyva I, Borja-Aburto V, Diaz-Barriga F (2001) Exposure to arsenic and lead and neuropsychological development in Mexican children. Environ Res 85:69–76CrossRefGoogle Scholar
  12. Canfield RL, Henderson CR, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP (2003) Intellectual impairment in children with blood lead concentrations below 10 μg per deciliter. N Engl J Med 348:1517–1526CrossRefGoogle Scholar
  13. Cartier C, Muckle G, Jacobson SW, Jacobson JL, Dewailly E, Ayotte P, Chevrier C, Saint-Amour D (2014) Prenatal and 5-year p, p’-DDE exposures are associated with altered sensory processing in school-aged children in Nunavik: a visual evoked potential study. Neurotoxicology 44:8–16CrossRefGoogle Scholar
  14. CDC (2009) Fourth national report on human exposure to environmental chemicals. Department of Health and Human Services Centers for Disease Control and Prevention, AtlantaGoogle Scholar
  15. CDI (2011) Acciones de gobierno para el desarrollo integral de los pueblos indígenas: Informe 2011. Comisión Nacional para el Desarrollo de los Pueblos Indígenas, México, p 466Google Scholar
  16. Claus Henn B, Schnaas L, Ettinger AS, Schwartz J, Lamadrid-Figueroa H, Hernandez-Avila M, Amarasiriwardena C, Hu H, Bellinger DC, Wright RO, Tellez-Rojo MM (2012) Associations of early childhood manganese and lead coexposure with neurodevelopment. Environ Health Perspect 120:126–31CrossRefGoogle Scholar
  17. Covaci A, Hura C, Gheorghe A, Neels H, Dirtu AC (2008) Organochlorine contaminants in hair of adolescents from Iassy, Romania. Chemosphere 72:16–20CrossRefGoogle Scholar
  18. de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J (2007) Development of a WHO growth reference for school-aged children and adolescents. B World Health Organ 85:660–667CrossRefGoogle Scholar
  19. de Zwart LL, Haenen HE, Versantvoort CH, Wolterink G, van Engelen JG, Sips AJ (2004) Role of biokinetics in risk assessment of drugs and chemicals in children. Regulatory toxicology and pharmacology : RTP 39:282–309CrossRefGoogle Scholar
  20. Despres C, Beuter A, Richer F, Poitras K, Veilleux A, Ayotte P, Dewailly E, Saint-Amour D, Muckle G (2005) Neuromotor functions in Inuit preschool children exposed to Pb, PCBs, and Hg. Neurotoxicol Teratol 27:245–57CrossRefGoogle Scholar
  21. Dewailly E, Ayotte P, Bruneau S, Gingras S, Belles-Isles M, Roy R (2000) Susceptibility to infections and immune status in Inuit infants exposed to organochlorines. Environ Health Perspect 108:205–11CrossRefGoogle Scholar
  22. Dietrich KN, Ris MD, Succop PA, Berger OG, Bornschein RL (2001) Early exposure to lead and juvenile delinquency. Neurotoxicol Teratol 23:511–8CrossRefGoogle Scholar
  23. Diggs DL, Huderson AC, Harris KL, Myers JN, Banks LD, Rekhadevi PV, Niaz MS, Ramesh A (2011) Polycyclic aromatic hydrocarbons and digestive tract cancers: a perspective. Journal of Environmental Science and Health Part C, Environmental carcinogenesis & ecotoxicology reviews 29:324–57CrossRefGoogle Scholar
  24. Dominguez-Cortinas G, Diaz-Barriga F, Martinez-Salinas RI, Cossio P, Perez-Maldonado IN (2013) Exposure to chemical mixtures in Mexican children: high-risk scenarios. Environ Sci Pollut Res Int 20:351–7CrossRefGoogle Scholar
  25. Dorner G, Plagemann A (2002) DDT in human milk and mental capacities in children at school age: an additional view on PISA 2000. Neuro Endocrinol Lett 23:427–31Google Scholar
  26. Ducos P, Gaudin R, Bel J, Maire C, Francin JM, Robert A, Wild P (1992) trans, trans-Muconic acid, a reliable biological indicator for the detection of individual benzene exposure down to the ppm level. Int Arch Occup Environ Health 64:309–13CrossRefGoogle Scholar
  27. Fan R, Wang D, Mao C, Ou S, Lian Z, Huang S, Lin Q, Ding R, She J (2012) Preliminary study of children’s exposure to PAHs and its association with 8-hydroxy-2′-deoxyguanosine in Guangzhou, China. Environ Int 42:53–8CrossRefGoogle Scholar
  28. Ferreira AA, Welch JR, Santos RV, Gugelmin SA, Coimbra CE Jr (2012) Nutritional status and growth of indigenous Xavante children, Central Brazil. Nutr J 11:3CrossRefGoogle Scholar
  29. Flores-Ramirez R, Rico-Escobar E, Nunez-Monreal JE, Garcia-Nieto E, Carrizales L, Ilizaliturri-Hernandez C, Diaz-Barriga F (2012) Children exposure to lead in contaminated sites. Salud Publica Mex 54:383–92CrossRefGoogle Scholar
  30. Flores-Ramirez R, Ortiz-Perez MD, Batres-Esquivel L, Castillo CG, Ilizaliturri-Hernandez CA, Diaz-Barriga F (2014) Rapid analysis of persistent organic pollutants by solid phase microextraction in serum samples. Talanta 123:169–78CrossRefGoogle Scholar
  31. Frondas-Chauty A, Simon L, Branger B, Gascoin G, Flamant C, Ancel PY, Darmaun D, Roze JC (2014): Early growth and neurodevelopmental outcome in very preterm infants: impact of gender. Archives of disease in childhood. Fetal and neonatal edition 99, F366-72Google Scholar
  32. Georgieff MK (1998) Intrauterine growth retardation and subsequent somatic growth and neurodevelopment. J Pediatr 133:3–5CrossRefGoogle Scholar
  33. Gutiérrez JP, Rivera-Dommarco J, Shamah-Levy T, Villalpando-Hernández S, Franco A, Cuevas-Nasu L, Romero-Martínez M, H-Á M (2012) Encuesta Nacional de Salud y Nutrición 2012. Resultados Nacionales, 1. Instituto Nacional de Salud Pública, Cuernavaca, México, p 196Google Scholar
  34. Gutiérrez JP, Rivera-Dommarco J, Shamah-Levy T, Villalpando-Hernández S, Franco A, Cuevas-Nasu L, Romero-Martínez M, H-Á M (2013) Encuesta Nacional de Salud y Nutrición 2012. Resultados nacionales, Cuernavaca, MexicoGoogle Scholar
  35. Henn BC, Coull BA, Wright RO (2014) Chemical mixtures and children’s health. Curr Opin Pediatr 26:223–229CrossRefGoogle Scholar
  36. Hu SW, Chan YJ, Hsu HT, Wu KY, ChangChien GP, Shie RH, Chan CC (2011) Urinary levels of 1-hydroxypyrene in children residing near a coal-fired power plant. Environ Res 111:1185–91CrossRefGoogle Scholar
  37. Hubal EAC, de Wet T, Du Toit L, Firestone MP, Ruchirawat M, van Engelen J, Vickers C (2014) Identifying important life stages for monitoring and assessing risks from exposures to environmental contaminants: results of a World Health Organization review. Regul Toxicol Pharm 69:113–124CrossRefGoogle Scholar
  38. Jasso-Pineda Y, Espinosa-Reyes G, Gonzalez-Mille D, Razo-Soto I, Carrizales L, Torres-Dosal A, Mejia-Saavedra J, Monroy M, Ize AI, Yarto M, Diaz-Barriga F (2007) An integrated health risk assessment approach to the study of mining sites contaminated with arsenic and lead. Integr Environ Assess Manag 3:344–50CrossRefGoogle Scholar
  39. Jasso-Pineda Y, Diaz-Barriga F, Yanez-Estrada L, Perez-Vazquez FJ, Perez-Maldonado IN (2015) DNA damage in Mexican children living in high-risk contaminated scenarios. Sci Total Environ 518–519:38–48CrossRefGoogle Scholar
  40. Jin G-Z, Lee S-J, Kang J-H, Chang Y-S, Chang Y-Y (2008) Suppressing effect of goethite on PCDD/F and HCB emissions from plastic materials incineration. Chemosphere 70:1568–1576CrossRefGoogle Scholar
  41. Jin L, Liu J, Ye B, Ren A (2014) Concentrations of selected heavy metals in maternal blood and associated factors in rural areas in Shanxi Province, China. Environ Int 66:157–64CrossRefGoogle Scholar
  42. Jongeneelen FJ (2001) Benchmark guideline for urinary 1-hydroxypyrene as biomarker of occupational exposure to polycyclic aromatic hydrocarbons. Ann Occup Hyg 45:3–13CrossRefGoogle Scholar
  43. Karimi P, Peters KO, Bidad K, Strickland PT (2015) Polycyclic aromatic hydrocarbons and childhood asthma. Eur J Epidemiol 30:91–101CrossRefGoogle Scholar
  44. Khalade A, Jaakkola MS, Pukkala E, Jaakkola JJK (2010) Exposure to benzene at work and the risk of leukemia: a systematic review and meta-analysis. Environ Health 9Google Scholar
  45. Kim KH, Jahan SA, Kabir E, Brown RJ (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80CrossRefGoogle Scholar
  46. Kotloff KL et al (2013) Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382:209–22CrossRefGoogle Scholar
  47. Lanphear BP, Hornung R, Khoury J, Yolton K, Baghurst P, Bellinger DC, Canfield RL, Dietrich KN, Bornschein R, Greene T, Rothenberg SJ, Needleman HL, Schnaas L, Wasserman G, Graziano J, Roberts R (2005). Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Perspect. 113Google Scholar
  48. Lin CC, Chen YC, Su FC, Lin CM, Liao HF, Hwang YH, Hsieh WS, Jeng SF, Su YN, Chen PC (2013) In utero exposure to environmental lead and manganese and neurodevelopment at 2 years of age. Environ Res 123:52–57CrossRefGoogle Scholar
  49. Link B, Gabrio T, Zoellner I, Piechotowski I, Paepke O, Herrmann T, Felder-Kennel A, Maisner V, Schick KH, Schrimpf M, Schwenk M, Wuthe J (2005) Biomonitoring of persistent organochlorine pesticides, PCDD/PCDFs and dioxin-like PCBs in blood of children from South West Germany (Baden-Wuerttemberg) from 1993 to 2003. Chemosphere 58:1185–201CrossRefGoogle Scholar
  50. Lucchini RG, Guazzetti S, Zoni S, Benedetti C, Fedrighi C, Peli M, Donna F, Bontempi E, Borgese L, Micheletti S, Ferri R, Marchetti S, Smith DR (2014) Neurofunctional dopaminergic impairment in elderly after lifetime exposure to manganese. Neurotoxicology 45:309--17Google Scholar
  51. Martínez-Salinas R, Elena Leal M, Batres-Esquivel L, Domínguez-Cortinas G, Calderón J, Díaz-Barriga F, Pérez-Maldonado I (2010) Exposure of children to polycyclic aromatic hydrocarbons in Mexico: assessment of multiple sources. Int Arch Occup Environ Health 83:617–623CrossRefGoogle Scholar
  52. Martinez-Salinas RI, Elena Leal M, Batres-Esquivel LE, Dominguez-Cortinas G, Calderon J, Diaz-Barriga F, Perez-Maldonado IN (2010) Exposure of children to polycyclic aromatic hydrocarbons in Mexico: assessment of multiple sources. Int Arch Occup Environ Health 83:617–23CrossRefGoogle Scholar
  53. Martinez-Salinas RI, Diaz-Barriga F, Batres-Esquivel LE, Perez-Maldonado IN (2011) Assessment of the levels of DDT and its metabolites in soil and dust samples from Chiapas, Mexico. Bull Environ Contam Toxicol 86:33–7CrossRefGoogle Scholar
  54. McCarty KM, Cleveland RJ, Franklin P, Sly PD (2014) Chemical exposure and respiratory health of children in an industrial setting. Rev Environ Health 29:133–4CrossRefGoogle Scholar
  55. McHale CM, Zhang L, Smith MT (2012) Current understanding of the mechanism of benzene-induced leukemia in humans: implications for risk assessment. Carcinogenesis 33:240–52CrossRefGoogle Scholar
  56. Mejia-Saavedra J, Sanchez-Armass S, Santos-Medrano GE, Gonzalez-Amaro R, Razo-Soto I, Rico-Martinez R, Diaz-Barriga F (2005) Effect of coexposure to DDT and manganese on freshwater invertebrates: pore water from contaminated rivers and laboratory studies. Environmental toxicology and chemistry / SETAC 24:2037–44CrossRefGoogle Scholar
  57. Mejía-Saavedra J, Sánchez-Armass S, Santos-Medrano GE, Gonzáaaalez-Amaro R, Razo-Soto I, Rico-Martínez R, Díaz-Barriga F (2005) Effect of coexposure to DDT and manganese on freshwater invertebrates: pore water from contaminated rivers and laboratory studies. Environ Toxicol Chem 24:2037–2044CrossRefGoogle Scholar
  58. Needleman HL, McFarland C, Ness RB, Fienberg SE, Tobin MJ (2002) Bone lead levels in adjudicated delinquents. A case control study. Neurotoxicol Teratol 24:711–7CrossRefGoogle Scholar
  59. Nettleton C, Napolitano DA, C S 2007: An overview of current knowledge of the social determinants of Indigenous health: working paper, compilers, GenevaGoogle Scholar
  60. Olsson AC, Fevotte J, Fletcher T, Cassidy A, t Mannetje A, Zaridze D, Szeszenia-Dabrowska N, Rudnai P, Lissowska J, Fabianova E, Mates D, Bencko V, Foretova L, Janout V, Brennan P, Boffetta P (2010) Occupational exposure to polycyclic aromatic hydrocarbons and lung cancer risk: a multicenter study in Europe. Occup Environ Med 67:98–103CrossRefGoogle Scholar
  61. Ortiz-Perez MD, Torres-Dosal A, Batres LE, Lopez-Guzman OD, Grimaldo M, Carranza C, Perez-Maldonado IN, Martinez F, Perez-Urizar J, Diaz-Barriga F (2005) Environmental health assessment of deltamethrin in a malarious area of Mexico: environmental persistence, toxicokinetics, and genotoxicity in exposed children. Environ Health Perspect 113:782–6CrossRefGoogle Scholar
  62. Perera FP, Rauh V, Whyatt RM, Tsai WY, Tang D, Diaz D, Hoepner L, Barr D, Tu YH, Camann D, Kinney P (2006) Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ Health Perspect 114:1287–92CrossRefGoogle Scholar
  63. Perez-Maldonado IN, Diaz-Barriga F, de la Fuente H, Gonzalez-Amaro R, Calderon J, Yanez L (2004) DDT induces apoptosis in human mononuclear cells in vitro and is associated with increased apoptosis in exposed children. Environ Res 94:38–46CrossRefGoogle Scholar
  64. Perez-Maldonado IN, Ramirez-Jimenez Mdel R, Martinez-Arevalo LP, Lopez-Guzman OD, Athanasiadou M, Bergman A, Yarto-Ramirez M, Gavilan-Garcia A, Yanez L, Diaz-Barriga F (2009) Exposure assessment of polybrominated diphenyl ethers (PBDEs) in Mexican children. Chemosphere 75:1215–20CrossRefGoogle Scholar
  65. Perez-Maldonado IN, Trejo-Acevedo A, Pruneda-Alvarez LG, Gaspar-Ramirez O, Ruvalcaba-Aranda S, Perez-Vazquez FJ (2013) DDT, DDE, and 1-hydroxypyrene levels in children (in blood and urine samples) from Chiapas and Oaxaca, Mexico. Environ Monit Assess 185:9287–93CrossRefGoogle Scholar
  66. Perez-Vazquez FJ, Flores-Ramirez R, Ochoa-Martinez AC, Orta-Garcia ST, Hernandez-Castro B, Carrizalez-Yanez L, Perez-Maldonado IN (2015) Concentrations of persistent organic pollutants (POPs) and heavy metals in soil from San Luis Potosi, Mexico. Environ Monit Assess 187:4119CrossRefGoogle Scholar
  67. PNUD (2010): Informe sobre Desarrollo Humano de los Pueblos Indígenas en México. El reto de la desigualdad de oportunidades. Programa de las Naciones Unidas para el DesarrolloGoogle Scholar
  68. Polanska K, Jurewicz J, Hanke W (2012) Exposure to environmental and lifestyle factors and attention-deficit/hyperactivity disorder in children—a review of epidemiological studies. Int J Occup Med Env 25:330–355Google Scholar
  69. Porta M, López T, Gasull M, Rodríguez-Sanz M, Garí M, Pumarega J, Borrell C, Grimalt JO (2012) Distribution of blood concentrations of persistent organic pollutants in a representative sample of the population of Barcelona in 2006, and comparison with levels in 2002. Sci Total Environ 423:151–161CrossRefGoogle Scholar
  70. Pruneda-Alvarez LG, Perez-Vazquez FJ, Salgado-Bustamante M, Martinez-Salinas RI, Pelallo-Martinez NA, Perez-Maldonado IN (2012) Exposure to indoor air pollutants (polycyclic aromatic hydrocarbons, toluene, benzene) in Mexican indigenous women. Indoor Air 22:140–7CrossRefGoogle Scholar
  71. Puumala SE, Ross JA, Aplenc R, Spector LG (2013) Epidemiology of childhood acute myeloid leukemia. Pediatr Blood Cancer 60:728–33CrossRefGoogle Scholar
  72. Ruchirawat M, Settachan D, Navasumrit P, Tuntawiroon J, Autrup H (2007) Assessment of potential cancer risk in children exposed to urban air pollution in Bangkok, Thailand. Toxicol Lett 168:200–209CrossRefGoogle Scholar
  73. Ruiz PG, Perez MDO (2009) Microescale adaptation of the potentiometric method with ion selective electrode for quantification of fluoride. Revista Internacional De Contaminacion Ambiental 25:87–94Google Scholar
  74. Ruiz-Navarro ML, Navarro-Alarcon M, Lopez Gonzalez-de la Serrana H, Perez-Valero V, Lopez-Martinez MC (1998) Urine arsenic concentrations in healthy adults as indicators of environmental contamination: relation with some pathologies. Sci Total Environ 216:55–61CrossRefGoogle Scholar
  75. Ruiz-Vera T, Pruneda-Alvarez LG, Ochoa-Martinez AC, Ramirez-GarciaLuna JL, Pierdant-Perez M, Gordillo-Moscoso AA, Perez-Vazquez FJ, Perez-Maldonado IN (2015) Assessment of vascular function in Mexican women exposed to polycyclic aromatic hydrocarbons from wood smoke. Environ Toxicol Pharmacol 40:423–9CrossRefGoogle Scholar
  76. Sanchez-Guerra M, Pelallo-Martinez N, Diaz-Barriga F, Rothenberg SJ, Hernandez-Cadena L, Faugeron S, Oropeza-Hernandez LF, Guaderrama-Diaz M, Quintanilla-Vega B (2012) Environmental polycyclic aromatic hydrocarbon (PAH) exposure and DNA damage in Mexican children. Mutat Res 742:66–71CrossRefGoogle Scholar
  77. Schulz C, Angerer J, Ewers U, Heudorf U, Wilhelm M (2009) Revised and new reference values for environmental pollutants in urine or blood of children in Germany derived from the German Environmental Survey on Children 2003–2006 (GerES IV). Int J Hyg Environ Health 212:637–647CrossRefGoogle Scholar
  78. Smith M, Barnett M, Bassan R, Gatta G, Tondini C, Kern W (2004) Adult acute myeloid leukaemia. Crit Rev Oncol Hematol 50:197–222CrossRefGoogle Scholar
  79. Stephens C, Nettleton C, Porter J, Willis R, Clark S (2005) Indigenous peoples’ health—why are they behind everyone, everywhere? Lancet 366:10–3CrossRefGoogle Scholar
  80. Subramanian KS (1989) Determination of lead in blood by graphite furnace atomic absorption spectrometry—a critique. Sci Total Environ 89:237–250CrossRefGoogle Scholar
  81. Taussky HH (1954) A microcolorimetric determination of creatine in urine by the Jaffe reaction. J Biol Chem 208:853–61Google Scholar
  82. Thumbi SM, Njenga MK, Marsh TL, Noh S, Otiang E, Munyua P, Ochieng L, Ogola E, Yoder J, Audi A, Montgomery JM, Bigogo G, Breiman RF, Palmer GH, McElwain TF (2015) Linking human health and livestock health: a “one-health” platform for integrated analysis of human health, livestock health, and economic welfare in livestock dependent communities. PLoS ONE 10:e0120761CrossRefGoogle Scholar
  83. Torres-Dosal A, Perez-Maldonado IN, Jasso-Pineda Y, Martinez Salinas RI, Alegria-Torres JA, Diaz-Barriga F (2008) Indoor air pollution in a Mexican indigenous community: evaluation of risk reduction program using biomarkers of exposure and effect. Sci Total Environ 390:362–8CrossRefGoogle Scholar
  84. Trejo-Acevedo A, Rivero-Perez NE, Flores-Ramirez R, Orta-Garcia ST, Pruneda-Alvarez LG, Perez-Maldonado IN (2012) Assessment of the levels of hexachlorocyclohexane in blood samples from Mexico. Bull Environ Contam Toxicol 88:833–7CrossRefGoogle Scholar
  85. Vine MF, Stein L, Weigle K, Schroeder J, Degnan D, Tse CK, Hanchette C, Backer L (2000) Effects on the immune system associated with living near a pesticide dump site. Environ Health Perspect 108:1113–24CrossRefGoogle Scholar
  86. Vlaanderen J, Lan Q, Kromhout H, Rothman N, Vermeulen R (2011) Occupational benzene exposure and the risk of lymphoma subtypes: a meta-analysis of cohort studies incorporating three study quality dimensions. Environ Health Perspect 119:159–67CrossRefGoogle Scholar
  87. Vlaanderen J, Lan Q, Kromhout H, Rothman N, Vermeulen R (2012) Occupational benzene exposure and the risk of chronic myeloid leukemia: a meta-analysis of cohort studies incorporating study quality dimensions. Am J Ind Med 55:779–85CrossRefGoogle Scholar
  88. Wigle DT, Arbuckle TE, Turner MC, Berube A, Yang QY, Liu SL, Krewski D (2008) Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants. J Toxicol Env Heal B 11:373–517CrossRefGoogle Scholar
  89. Winkler TW et al (2015) The influence of age and sex on genetic associations with adult body size and shape: a large-scale genome-wide interaction study. PLoS Genet 11:e1005378CrossRefGoogle Scholar
  90. Wright RO, Amarasiriwardena C, Woolf AD, Jim R, Bellinger DC (2006) Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology 27:210–6CrossRefGoogle Scholar
  91. Yanez L, Borja-Aburto VH, Rojas E, de la Fuente H, Gonzalez-Amaro R, Gomez H, Jongitud AA, Diaz-Barriga F (2004) DDT induces DNA damage in blood cells. Studies in vitro and in women chronically exposed to this insecticide. Environ Res 94:18–24CrossRefGoogle Scholar
  92. Zaitseva NV, Ustinova O, Maklakova OA (2014) Scientific and methodological approaches to the organization of the preventive care for children with respiratory diseases associated with the exposure to chemical factors. Gig Sanit 93:104–7Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • R. Flores-Ramírez
    • 1
  • F. J. Pérez-Vázquez
    • 2
  • V. G. Cilia-López
    • 2
  • B. A. Zuki-Orozco
    • 2
  • L. Carrizales
    • 2
  • L. E. Batres-Esquivel
    • 2
  • A. Palacios-Ramírez
    • 2
  • F. Díaz-Barriga
    • 2
    Email author
  1. 1.Catedrático CONACYT-Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT)Universidad Autónoma de San Luis PotosíSan Luis PotosíMéxico
  2. 2.Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de MedicinaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMéxico

Personalised recommendations