Environmental Science and Pollution Research

, Volume 23, Issue 10, pp 9843–9851 | Cite as

T-screen and yeast assay for the detection of the thyroid-disrupting activities of cadmium, mercury, and zinc

  • Jian LiEmail author
  • Yun Liu
  • Dongdong Kong
  • Shujuan Ren
  • Na Li
Research Article


In the present study, a two-hybrid yeast bioassay and a T-screen were used to screen for the thyroid receptor (TR)-disrupting activity of select metallic compounds (CdCl2, ZnCl2, HgCl2, CuSO4, MnSO4, and MgSO4). The results reveal that none of the tested metallic compounds showed TR-agonistic activity, whereas ZnCl2, HgCl2, and CdCl2 demonstrated TR antagonism. For the yeast assay, the dose–response relationship of these metallic compounds was established, and the concentrations producing 20 % of the maximum effect of ZnCl2, HgCl2, and CdCl2 were 9.1 × 10−5, 3.2 × 10−6, and 1.2 × 10−6 mol/L, respectively. The T-screen also supported the finding that ZnCl2, HgCl2, and CdCl2 decreased the cell proliferation at concentrations ranging from 10−6 to 10−4 mol/L. Furthermore, the thyroid-disrupting activity of metallic compounds in environmental water samples collected from the Guanting Reservoir, Beijing, China was evaluated. Solid-phase extraction was used to separate the organic extracts, and a modified two-hybrid yeast bioassay revealed that the metallic compounds in the water samples could affect thyroid hormone-induced signaling by decreasing the binding of the thyroid hormone. The addition of ethylenediaminetetraacetic acid (30 mg/L) could eliminate the effects. Thus, the cause(s) of the thyroid toxicity in the water samples appeared to be partly related to the metallic compounds.


In vitro bioassay Toxic metals Thyroid receptor Thyroid-disrupting activity 



This study was supported by the National Natural Science Foundation of China (41001351), the Fundamental Research Funds for the Central Universities (2012LYB35), and the Major Science and Technology Program for Water Pollution Control and Treatment (2014ZX07201-010).

Supplementary material

11356_2016_6095_MOESM1_ESM.doc (78 kb)
ESM 1 (DOC 78.0 kb)


  1. Ali I, Penttinen-Damdimopoulou PE, Mäkelä SI, Berglund M, Stenius U, Akesson A, Håkansson H, Halldin K (2010) Estrogen-like effects of cadmium in vivo do not appear to be mediated via the classical estrogen receptor transcriptional pathway. Environ Health Perspect 118:1389–1394. doi: 10.1289/ehp.1001967 CrossRefGoogle Scholar
  2. Berg J (1990) Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. J Biol Chem 265:6513–6516Google Scholar
  3. Boas M, Feldt-Rasmussen U, Main KM (2012) Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol 355:240–248. doi: 10.1016/j.mce.2011.09.005 CrossRefGoogle Scholar
  4. Buha A, Antonijevic B, Bulat Z, Jacevic V, Milovanovic V, Matovic V (2013) The impact of prolonged cadmium exposure and co-exposure with polychlorinated biphenyls on thyroid function in rats. Toxicol Lett 221:83–90. doi: 10.1016/j.toxlet.2013.06.216 CrossRefGoogle Scholar
  5. Chattopadhyay S, Freake HC (1998) Zinc chelation enhances thyroid hormone induction of growth hormone mRNA in GH3 cells. Mol Cell Endocrinol 136:151–157. doi: 10.1016/S0303-7207(97)00228-1 CrossRefGoogle Scholar
  6. Curčić M, Jankovic S, Jacevic V, Stankovic S, Vucinic S, Durgo K, Bulat Z, Antoni-jevic B (2012) Combined effects of cadmium and decabrominated diphenylether on thyroid hormones in rats. Arh Hig Rada Toksikol 63:255–262. doi: 10.2478/10004-1254-63-2012-2179 Google Scholar
  7. Denier X, Hill EM, Rotchell J, Minier C (2009) Estrogenic activity of cadmium, copper and zinc in the yeast estrogen screen. Toxicol In Vitro 23:569–573. doi: 10.1016/j.tiv.2009.01.006 CrossRefGoogle Scholar
  8. Dundar B, Oktem F, Arslan KM, Delibas N, Baykal B, Arslan C, Gultepe M, Ilhan EI (2006) The effect of long-term low-dose lead exposure on thyroid function in adolescents. Environ Res 101:140–145. doi: 10.1016/j.envres.2005.10.002 CrossRefGoogle Scholar
  9. Freitas J, Cano P, Craig-Veit C, Goodson ML, Furlow JD, Murk AJ (2011) Detection of thyroid hormone receptor disruptors by a novel stable in vitro reporter gene assay. Toxicol In Vitro 25:257–266. doi: 10.1016/j.tiv.2010.08.013 CrossRefGoogle Scholar
  10. Fu J, Zhao C, Luo Y, Liu C, Kyzase GZ, Luo Y, Zhao D, An S, Zhu H (2014) Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors. J Hazard Mater 270:102–109. doi: 10.1016/j.jhazmat.2014.01.044 CrossRefGoogle Scholar
  11. Goyer RA, Klaassen CD, Waalks MP (1995) Metal toxicology. Academic, San Diego, pp 21–36CrossRefGoogle Scholar
  12. Gupta P, Kar A (1999) Cadmium induced thyroid dysfunction in chicken: hepatic type I iodothyronine 5%-monodeiodinase activity and role of lipid peroxidation. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 123:39–44. doi: 10.1016/S0742-8413(99)00007-9 CrossRefGoogle Scholar
  13. Gupta P, Chaurasia SS, Kar A, Maiti PK (1997) Influence of cadmium on thyroid hormone concentrations and lipid peroxidation in a fresh water fish, Clarias batrachus. Fresen Environ Bull 6:355–358Google Scholar
  14. Gutleb AC, Meerts IA, Schriks M, Murk AJ (2005) T-Screen as a tool to identify thyroid hormone receptor active compounds. Environ Toxicol Pharmacol 19:231–238. doi: 10.1016/j.etap.2004.06.003 CrossRefGoogle Scholar
  15. Hammouda F, Messaoudi I, El Hani J, Baati T, Saïd K, Kerkeni A (2008) Reversal of cadmium-induced thyroid dysfunction by selenium, zinc, or their combinationin rat. Biol Trace Elem Res 126:194–203. doi: 10.1007/s12011-008-8194-8 CrossRefGoogle Scholar
  16. Hohenwarter O, Waltenberger A, Katinger H (1996) An in vitro test system for thyroid hormone action. Anal Biochem 234:56–59. doi: 10.1006/abio.1996.0049 CrossRefGoogle Scholar
  17. Isidori M, Cangiano M, Palerma A (2010) E-screen and vitellogenin assay for the detection of the estrogenic activity of alkylphenols and trace elements. Comp Biochem Physiol C Toxicol Pharmacol 152:51–56. doi: 10.1016/j.cbpc.2010.02.011 CrossRefGoogle Scholar
  18. Kosta L, Byrne AR, Zelenko V (1975) Correlation between selenium and mercury in man following exposure to inorganic mercury. Nature 254:238–239. doi: 10.1038/254238a0 CrossRefGoogle Scholar
  19. Li J, Ma M, Wang Z (2008) A two-hybrid yeast assay to quantify the effects of xenobiotics on thyroid hormone-mediated gene expression. Environ Toxicol Chem 27:159–167. doi: 10.1897/07-054.1 CrossRefGoogle Scholar
  20. Li J, Wang Z, Ma M, Peng X (2010) Analysis of environmental endocrine disrupting activities using recombinant yeast assay in wastewater treatment plant effluents. Bull Environ Contam Toxicol 84:529–535. doi: 10.1007/s00128-010-0004-2 CrossRefGoogle Scholar
  21. Li J, Ren SJ, Han SL, Li N (2014) A yeast bioassay for direct measurement of thyroid hormone disrupting effects in water without sample extraction, concentration, or sterilization. Chemosphere 100:139–145. doi: 10.1016/j.chemosphere.2013.11.054 CrossRefGoogle Scholar
  22. Lukaski HC, Hall CB, Marchello MJ (1995) Body temperature and thyroid hormone metabolism of copper-deficient rats. J Nutr Biochem 6:445–451. doi: 10.1016/0955-2863(95)00062-5 CrossRefGoogle Scholar
  23. Martins VV, Zanetti MO, Pitondo-Silva A, Stehling EG (2014) Aquatic environments polluted with antibiotics and heavy metals: a human health hazard. Environ Sci Pollut Res Int 21:5873–5878. doi: 10.1007/s11356-014-2509-4 CrossRefGoogle Scholar
  24. Murk AJ, Rijntjes E, Blaauboer BJ, Clewell R, Crofton KM, Dingemans MM, Furlow JD, Kavlock R, Kohrle J, Opitz R, Traas T, Visser TJ, Xia M, Gutleb AC (2013) Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals. Toxicol In Vitro 27:1320–1346. doi: 10.1016/j.tiv.2013.02.012 CrossRefGoogle Scholar
  25. Norman MF, Lavin TN (1989) Antagonism of thyroid hormone action by amiodarone in rat pituitary tumor cells. J Clin Invest 83:306–313. doi: 10.1172/JCI113874 CrossRefGoogle Scholar
  26. Rehmann RK, Schramm KW, Kettrup AA (1999) Applicability of a yeast oestrogen screen for the detection of oestrogen-like activities in environmental samples. Chemophere 38:3303–3312. doi: 10.1016/S0045-6535(98)00562-1 CrossRefGoogle Scholar
  27. Schriks M, Vrabie CM, Gutleb AC, Faassen EJ, Rietjens IM, Murk AJ (2006) T-screen to quantify functional potentiating, antagonistic and thyroid hormone-like activities of poly halogenated aromatic hydrocarbons (PHAHs). Toxicol In Vitro 20:490–498. doi: 10.1016/j.tiv.2005.09.001 CrossRefGoogle Scholar
  28. Sciaudone MP, Chattopadhyay S, Freake HC (2000) Chelation of zinc amplifies induction of growth hormone mRNA levels in cultured rat pituitary tumor cells. J Nutr 130:158–163Google Scholar
  29. Shi X, Liu C, Wu G, Zhou B (2009) Waterborne exposure to PFOS causes disruption of the hypothalamus–pituitary–thyroid axis in zebrafish larvae. Chemosphere 77:1010–1018. doi: 10.1016/j.chemosphere.2009.07.074 CrossRefGoogle Scholar
  30. Shiue I (2015) Urinary heavy metals, phthalates and polyaromatic hydrocarbons independent of health events are associated with adult depression: USA NHANES, 2011–2012. Environ Sci Pollut Res Int 22:17095–17103. doi: 10.1007/s11356-015-4944-2 CrossRefGoogle Scholar
  31. Sin YM, Teh WF, Wong MK, Reddy PK (1990) Effect of mercury on glutathione and thyroid hormones. Bull Environ Contain Toxicol 44:616–622CrossRefGoogle Scholar
  32. Sirbasku DA, Pakala R, Sato H, Eby JE (1991) Thyroid hormone dependent pituitary tumor cell growth in serum-free chemically defined culture. A new regulatory role for apotransferrin. Biochem 30:7466–7477. doi: 10.1021/bi00244a015 CrossRefGoogle Scholar
  33. Surks MI, Ramirez IJ, Shapiro LE, Kumara-Siri M (1989) Effect of zinc (II) and other divalent cations on binding of 3,5,3′-triiodo-L-thyronine to nuclear receptors from cultured GC cells. J Biol Chem 264:9820–9826Google Scholar
  34. Wada L, King JC (1986) Effect of low zinc intakes on basal metabolic rate, thyroid hormones and protein utilization in adult men. J Nutr 116:1045–1053Google Scholar
  35. Yaman M, Kaya G, Yekeler H (2007) Distribution of trace metal concentrations in paired cancerous and non-cancerous human stomach tissues. World J Gastroenterol 13:612–618CrossRefGoogle Scholar
  36. Yen PM, Ando S, Feng X, Liu Y, Maruvanda P, Xia X (2006) Thyroid hormone action at the cellular, genomic and target gene levels. Mol Cell Endocrinol 246:121–127CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jian Li
    • 1
    Email author
  • Yun Liu
    • 2
  • Dongdong Kong
    • 1
  • Shujuan Ren
    • 1
  • Na Li
    • 3
  1. 1.Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water SciencesBeijing Normal UniversityBeijingChina
  2. 2.South China Institute of Environmental Science, Ministry of Environmental ProtectionGuangzhouChina
  3. 3.State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijingChina

Personalised recommendations