Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 11, pp 10443–10456 | Cite as

Effect of organic carbon and metal accumulation on the bacterial communities in sulphidogenic sediments

  • Matthieu Bueche
  • Pilar Junier
Recent sediments: environmental chemistry, ecotoxicology and engineering

Abstract

A unique geochemical setting in Lake Cadagno, Switzerland, has led to the accumulation of insoluble metal sulphides in the sedimentary record as the result of past airborne pollution. This offers an exceptional opportunity to study the effect of these metals on the bacterial communities in sediments, and in particular to investigate further the link between metal contamination and an increase in the populations of endospore-forming bacteria observed previously in other metal-contaminated sediments. A decrease in organic carbon and total bacterial counts was correlated with an increase in the numbers of endospores in the oldest sediment samples, showing the first environmental evidence of a decrease in nutrient availability as a trigger of sporulation. Proteobacteria and Firmicutes were the two dominant bacterial phyla throughout the sediment, the former in an area with high sulphidogenic activity, and the latter in the oldest samples. Even though the dominant Firmicutes taxa were stable along the sediment core and did not vary with changes in metal contamination, the prevalence of some molecular species like Clostridium sp. was positively correlated with metal sulphide concentration. However, this cannot be generalized to all endospore-forming species. Overall, the community composition supports the hypothesis of sporulation as the main mechanism explaining the dominance of endospore formers in the deepest part of the sediment core, while metal contamination in the form of insoluble metal sulphide deposits appears not to be linked with sporulation as a mechanism of metal tolerance in this sulphidogenic ecosystem.

Keywords

Heavy metals Nutrient deprivation Starvation Endosporulation Firmicutes Lake Cadagno 

Notes

Acknowledgments

We would like to thank the Alpine Biology Centre Foundation for the infrastructure and logistics support, Dr. Mauro Tonolla and Msc Francesco Danza of the Laboratory of applied microbiology of SUPSI and the Microbiology Unit of the University of Geneva for the sampling and helpful discussions. We also would like to thank all the students participating in the CUSO-2014 Summer School, which contributed to the measurements made in the water column. For the analysis of metals, we would like to thank Marylou Tercier-Waeber for granting us to the ICP-MS facilities from the Analytical Chemistry laboratory of the University of Geneva (Switzerland). We also acknowledge funding from the Swiss National Science Foundation, project 31003A_152972, for supporting this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing of interests.

Supplementary material

11356_2016_6056_MOESM1_ESM.docx (859 kb)
ESM 1 Supplementary Figures and scripts used in the analysis of the data (DOCX 859 kb)

References

  1. Altschul S, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–10. doi: 10.1006/jmbi.1990.9999 CrossRefGoogle Scholar
  2. Putschew A, Scholz-Böttcher BM, Rullkötter J (1995) Organic geochemistry of sulfur-rich surface sediments of meromictic Lake Cadagno, Swiss Alps. In: Geochemical Transformations of Sedimentary Sulfur. American Chemical Society, pp 59–79. doi: 10.1021/bk-1995-0612.ch004
  3. Arnaud F, Lignier V, Revel M et al (2002) Flood and earthquake disturbance of 210Pb geochronology (Lake Anterne, NW Alps). Terra Nov. 14:225–32. doi: 10.1046/j.1365-3121.2002.00413.x
  4. Bakke I, De Schryver P, Boon N, Vadstein O (2011) PCR-based community structure studies of bacteria associated with eukaryotic organisms: a simple PCR strategy to avoid co-amplification of eukaryotic DNA. J Microbiol Methods 84:349–51. doi: 10.1016/j.mimet.2010.12.015 CrossRefGoogle Scholar
  5. Binga EK, Lasken RS, Neufeld JD (2008) Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology. ISME J 2:233–41. doi: 10.1038/ismej.2008.10
  6. Birch L, Hanselmann KW, Bachofen R (1996) Heavy metal conservation in Lake Cadagno sediments: historical records of anthropogenic emissions in a meromictic alpine lake. Water Res 30:679–87. doi: 10.1016/0043-1354(95)00231-6 CrossRefGoogle Scholar
  7. Bossard P, Gammeter S, Lehmann C et al (2001) Limnological description of the Lakes Zürich, Lucerne, and Cadagno. Aquat Sci 63:225–49. doi: 10.1007/PL00001353 CrossRefGoogle Scholar
  8. Bosshard PP, Santini Y, Grüter D et al (2000) Bacterial diversity and community composition in the chemocline of the meromictic alpine Lake Cadagno as revealed by 16S rDNA analysis. FEMS Microbiol Ecol 31:173–82. doi: 10.1111/j.1574-6941.2000.tb00682.x CrossRefGoogle Scholar
  9. Brandes Ammann A, Kölle L, Brandl H (2011) Detection of bacterial endospores in soil by terbium fluorescence. Int J Microbiol 2011:435281. doi: 10.1155/2011/435281
  10. Bueche M, Wunderlin T, Roussel-Delif L, et al. (2013) Quantification of endospore-forming Firmicutes by qPCR with the functional gene spo0A. 79(17):5302–12. doi: 10.1128/AEM.01376-13
  11. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–6. doi: 10.1038/nmeth.f.303 CrossRefGoogle Scholar
  12. Cole JR, Wang Q, Fish JA et al (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–42. doi: 10.1093/nar/gkt1244 CrossRefGoogle Scholar
  13. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–72. doi: 10.1128/AEM.03006-05
  14. DeWeerd K, Mandelco L, Tanner R et al (1990) Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch Microbiol 154:23–30. doi: 10.1007/BF00249173 CrossRefGoogle Scholar
  15. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–1. doi: 10.1093/bioinformatics/btq461
  16. Errington J (2003) Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1:117–26. doi: 10.1038/nrmicro750 CrossRefGoogle Scholar
  17. Feinstein LM, Sul WJ, Blackwood CB (2009) Assessment of bias associated with incomplete extraction of microbial DNA from soil. Appl Environ Microbiol 75:5428–33. doi: 10.1128/AEM.00120-09 CrossRefGoogle Scholar
  18. Förstner U, Wittmann G (1981) Metal pollution in the aquatic environment, 2nd reviewed edition. Springer, New-York, Heidelberg, BerlinCrossRefGoogle Scholar
  19. Frank JA, Reich CI, Sharma S et al (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74:2461–70. doi: 10.1128/AEM.02272-07 CrossRefGoogle Scholar
  20. Gilboa-Garber N (1971) Direct spectrophotometric determination of inorganic sulfide in biological materials and in other complex mixtures. Anal Biochem 43:129–133. doi: 10.1016/0003-2697(71)90116-3
  21. Gilli A, Anselmetti F, Ariztegui D, McKenzie J (2003) A 600-year sedimentary record of flood events from two sub-alpine lakes (Schwendiseen, Northeastern Switzerland). Lake Systems from the Ice Age to Industrial Time. Birkhäuser Basel, In, pp 49–58Google Scholar
  22. Harris D, Horwáth WR, van Kessel C (2001) Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci Soc Am J 65:1853–6. doi: 10.2136/sssaj2001.1853
  23. Hedlund B, Dodsworth J, Cole J, Panosyan H (2013) An integrated study reveals diverse methanogens, Thaumarchaeota, and yet-uncultivated archaeal lineages in Armenian hot springs. Antonie Van Leeuwenhoek 104:71–82. doi: 10.1007/s10482-013-9927-z CrossRefGoogle Scholar
  24. Hemme CL, Deng Y, Gentry TJ et al (2010) Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. ISME J 4:660–72. doi: 10.1038/ismej.2009.154 CrossRefGoogle Scholar
  25. Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–82. doi: 10.1093/bmb/ldg032
  26. Junier P, Junier T, Podell S et al (2010) The genome of the Gram-positive metal- and sulfate-reducing bacterium Desulfotomaculum reducens strain MI-1. Environ Microbiol 12:2738–54. doi: 10.1111/j.1462-2920.2010.02242.x Google Scholar
  27. Kallmeyer J, Smith DC, Spivack AJ, D’Hondt S (2008) New cell extraction procedure applied to deep subsurface sediments. Limnol Oceanogr-Methods 6:236–45. doi: 10.4319/lom.2008.6.236
  28. Kleindienst S, Herbst F-A, Stagars M et al (2014) Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J 8:2029–44. doi: 10.1038/ismej.2014.51
  29. Lee ZM-P, Bussema C, Schmidt TM (2009) rrnDB: Documenting the number of rRNA and tRNA genes in bacteria and archaea. Nucleic Acids Res 37:D489–93. doi: 10.1093/nar/gkn689 CrossRefGoogle Scholar
  30. Lehmann C, Bachofen R (1999) Images of concentrations of dissolved sulphide in the sediment of a lake and implications for internal sulphur cycling. Sedimentology 46:537–44. doi: 10.1046/j.1365-3091.1999.00230.x CrossRefGoogle Scholar
  31. Löffler FE, Yan J, Ritalahti KM et al (2013) Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 63:625–35. doi: 10.1099/ijs.0.034926-0 CrossRefGoogle Scholar
  32. Luthy L, Fritz M, Bachofen R (2000) In situ determination of sulfide turnover rates in a meromictic alpine lake. Appl Environ Microbiol 66:712–7. doi: 10.1128/AEM.66.2.712-717.2000 CrossRefGoogle Scholar
  33. Madigan MT, Martinko JM, Stahl D, Clark DP (2012) Brock biology of microorganisms. Benjamin Cummings, San FranciscoGoogle Scholar
  34. McDonald D, Clemente J, Kuczynski J et al (2012) The biological observation matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. GigaScience 1:7. doi: 10.1186/2047-217X-1-7
  35. Milucka J, Kirf M, Lu L et al (2015) Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. 9(9):1991–2002. doi: 10.1038/ismej.2015.12
  36. Mori K, Yamaguchi K, Sakiyama Y et al (2009) Caldisericum exile gen. nov., sp. nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiserica phyl. nov., originally called the candidate phylum OP5, and description of Caldisericaceae fam. nov., Caldisericales ord. nov. and Caldisericia classis nov. Int J Syst Evol Microbiol 59:2894–8. doi: 10.1099/ijs.0.010033-0 CrossRefGoogle Scholar
  37. Morono Y, Terada T, Kallmeyer J, Inagaki F (2013) An improved cell separation technique for marine subsurface sediments: applications for high-throughput analysis using flow cytometry and cell sorting. Environ Microbiol 15:2841–9. doi: 10.1111/1462-2920.12153 Google Scholar
  38. Muyzer G, Dewaal E, Uitterlinden A (1993) Profiling of complex microbial populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16S ribosomal RNA. Appl Environ Microbiol 59:695–700Google Scholar
  39. Nawrocki EP, Kolbe DL, Eddy SR (2009) Infernal 1.0: inference of RNA alignments. Bioinformatics. doi: 10.1093/bioinformatics/btp157
  40. Nicholson W (2002) Roles of Bacillus endospores in the environment. Cell Mol Life Sci 59:410–6. doi: 10.1007/s00018-002-8433-7 CrossRefGoogle Scholar
  41. Nicholson WL, Munakata N, Horneck G et al (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–72. doi: 10.1128/MMBR.64.3.548-572.2000 CrossRefGoogle Scholar
  42. Niemann H, Stadnitskaia A, Wirth SB et al (2012) Bacterial GDGTs in Holocene sediments and catchment soils of a high Alpine lake: application of the MBT/CBT-paleothermometer. Clim Past 8:889–906. doi: 10.5194/cp-8-889-2012 CrossRefGoogle Scholar
  43. Oksanen J, Blanchet G, Kindt R et al (2013) Vegan: community ecology packageGoogle Scholar
  44. Olaniran A, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: Impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14:10197–228. doi: 10.3390/ijms140510197
  45. Oude Elferink SJWH, Akkermans-van Vliet WM, Bogte JJ, Stams AJM (1999) Desulfobacca acetoxidans gen. nov., sp. nov., a novel acetate-degrading sulfate reducer isolated from sulfidogenic granular sludge. Int J Syst Bacteriol 49:345–50. doi: 10.1099/00207713-49-2-345 CrossRefGoogle Scholar
  46. Ravasi DF, Peduzi S, Guidi V et al (2012) Development of a real-time PCR method for the detection of fossil 16S rDNA fragments of phototrophic sulfur bacteria in the sediments of Lake Cadagno. Geobiology 10:196–204. doi: 10.1111/j.1472-4669.2012.00326.x CrossRefGoogle Scholar
  47. Reed DW, Fujita Y, Delwiche ME et al (2002) Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl Environ Microbiol 68:3759–70. doi: 10.1128/AEM.68.8.3759-3770.2002 CrossRefGoogle Scholar
  48. Rial D, Vázquez J, Murado M (2011) Effects of three heavy metals on the bacteria growth kinetics: a bivariate model for toxicological assessment. Appl Microbiol Biotechnol 90:1095–109. doi: 10.1007/s00253-011-3138-1 CrossRefGoogle Scholar
  49. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–7. doi: 10.1016/S0168-9525(00)02024-2
  50. Rohini Kumar M, Saravanan VS (2010) Candidate OP phyla: importance, ecology and cultivation prospects. Indian J Microbiol 50:474–7. doi: 10.1007/s12088-011-0144-z CrossRefGoogle Scholar
  51. Sauvain L, Bueche M, Junier T et al (2013) Bacterial communities in trace metal contaminated lake sediments are dominated by endospore-forming bacteria. Aquat Sci 1–14. doi: 10.1007/s00027-013-0313-8
  52. Schubert CJ, Vazquez F, Lösekann-Behrens T et al (2011) Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS Microbiol Ecol 76:26–38. doi: 10.1111/j.1574-6941.2010.01036.x CrossRefGoogle Scholar
  53. Siddaramappa S, Challacombe JF, Delano SF et al (2012) Complete genome sequence of Dehalogenimonas lykanthroporepellens type strain (BL-DC-9(T)) and comparison to “Dehalococcoides” strains. Stand Genomic Sci 6:251–64. doi: 10.4056/sigs.2806097 CrossRefGoogle Scholar
  54. Team RDC (2009) R: a language and environment for statistical computing. The R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  55. Tonolla M, Bottinelli M, Demarta A et al (2005a) Molecular identification of an uncultured bacterium (“morphotype R”) in meromictic Lake Cadagno, Switzerland. FEMS Microbiol Ecol 53:235–44. doi: 10.1016/j.femsec.2004.12.012 CrossRefGoogle Scholar
  56. Tonolla M, Peduzzi R, Hahn D (2005b) Long-term population dynamics of phototrophic sulfur bacteria in the chemocline of Lake Cadagno, Switzerland. Appl Environ Microbiol 71:3544–50. doi: 10.1128/AEM.71.7.3544-3550.2005 CrossRefGoogle Scholar
  57. Tonolla M, Peduzzi S, Demarta A et al (2004) Phototropic sulfur and sulfate-reducing bacteria in the chemocline of meromictic Lake Cadagno, Switzerland. J Limnol 63(2): 161–170Google Scholar
  58. Vos P, Garrity G, Jones D et al (2011) Bergey’s manual of systematic bacteriology: Volume 3: The Firmicutes. Springer-Verlag, New York. doi: 10.1007/978-0-387-68489-5
  59. Wirth SB, Gilli A, Niemann H et al (2013) Combining sedimentological, trace metal (Mn, Mo) and molecular evidence for reconstructing past water-column redox conditions: the example of meromictic Lake Cadagno (Swiss Alps). Geochim Cosmochim Acta 120:220–38. doi: 10.1016/j.gca.2013.06.017 CrossRefGoogle Scholar
  60. Wrighton KC, Thomas BC, Sharon I et al (2012) Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science 337:1661–5. doi: 10.1126/science.1224041 CrossRefGoogle Scholar
  61. Wunderlin T, Junier T, Roussel-Delif L et al (2013) Stage 0 sporulation gene A as a molecular marker to study diversity of endospore-forming Firmicutes. Environ Microbiol Rep 5:911–24. doi: 10.1111/1758-2229.12094 CrossRefGoogle Scholar
  62. Yamada T, Imachi H, Ohashi A et al (2007) Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int J Syst Evol Microbiol 57:2299–306. doi: 10.1099/ijs.0.65098-0 CrossRefGoogle Scholar
  63. Yamakura T, Sahunalu P (1990) Soil carbon/nitrogen ratio as a site quality index for some Southeast Asian forests. J Trop Ecol 6:371–7. doi: 10.2307/2559839 CrossRefGoogle Scholar
  64. Yan L, Zhang S, Chen P et al (2012) Magnetotactic bacteria, magnetosomes and their application. Microbiol Res 167:507–19. doi: 10.1016/j.micres.2012.04.002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratory of MicrobiologyInstitute of Biology, University of NeuchatelNeuchatelSwitzerland

Personalised recommendations