Environmental Science and Pollution Research

, Volume 23, Issue 9, pp 8441–8452 | Cite as

Evidence of hormesis on human neuronal SK-N-BE cells treated with sodium arsenate: impact at the mitochondrial level

  • Wafa KharroubiEmail author
  • Samia Haj Ahmed
  • Thomas Nury
  • Pierre Andreoletti
  • Zohra Haouas
  • Amira Zarrouk
  • Rachid Sakly
  • Mohamed Hammami
  • Gérard Lizard
Research Article


Exposure of human neuronal SK-N-BE cells to sodium arsenate (AsV 0.1–400 μM; 48 h) induced a biphasic toxic effect evoking hormesis. Indeed, at low concentrations, AsV stimulates cell proliferation visualized by phase contrast microscopy, whereas at high concentrations, an induction of cell death associated with a loss of cell adhesion was observed. These side effects were confirmed with crystal violet test, cell cycle analysis, evaluation of the percentage of Ki67 positive cells, and staining with propidium iodide. The impact of AsV on mitochondrial functions, which was determined by the MTT assay, the measurement of mitochondrial transmembrane potential with DiOC6(3), and the rate of mitochondrial ATP, also support an hormesis process. In addition, in the presence of high concentrations of AsV, a significant decrease of the protein expression of OXPHOS complexes of the respiratory chain was observed by western blot supporting that AsV-induced cell death is associated with mitochondrial alterations. Therefore, there are some evidences of hormesis on AsV-treated SK-N-BE cells, and at high concentrations, the mitochondria are a target of toxicity induced by AsV.


Sodium arsenate Human neuronal SK-NB-E Mitochondrial dysfunctions OXPHOS complexes 



Sodium arsenate


Dulbecco’s Modified Eagle Medium


Propidium iodide


Mitochondrial transmembrane potential



This work was supported by grants from the Université de Bourgogne (Dijon, France), and the Université de Monastir (Monastir, Tunisia).


  1. Breuer ME, Koopman WJ, Koene S et al (2013) The role of mitochondrial OXPHOS dysfunction in the development of neurologic diseases. Neurobiol Dis 51:27–34. doi: 10.1016/j.nbd.2012.03.007 CrossRefGoogle Scholar
  2. Chiou H-Y, Chiou S-T, Hsu Y-H et al (2001) Incidence of transitional cell carcinoma and arsenic in drinking water: a follow-up study of 8,102 residents in an arseniasis-endemic area in northeastern Taiwan. Am J Epidemiol 153:411–418CrossRefGoogle Scholar
  3. Cottet-Rousselle C, Ronot X, Leverve XMJ (2011) Cytometric assessment of mitochondria using fluorescent probes. Cytom A 79:405–25CrossRefGoogle Scholar
  4. Dakeishi M, Murata K, Grandjean P (2006) Environmental health: a global long-term consequences of arsenic poisoning during infancy due to contaminated milk powder. Environ Heal 7:1–7. doi: 10.1186/1476-069X-5-Received Google Scholar
  5. Fukui H, Moraes CT (2008) The mitochondrial impairment, oxidative stress and neurodegeneration connection: reality or just an attractive hypothesis? Trends Neurosci 31:251–256. doi: 10.1016/j.tins.2008.02.008.The CrossRefGoogle Scholar
  6. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–12CrossRefGoogle Scholar
  7. Hong G-M, Bain LJ (2012) Arsenic exposure inhibits myogenesis and neurogenesis in P19 stem cells through repression of the β-catenin signaling pathway. Toxicol Sci 129:146–56. doi: 10.1093/toxsci/kfs186 CrossRefGoogle Scholar
  8. Inauen J, Tobias R, Mosler H (2013) Predicting water consumption habits for seven arsenic-safe water options in Bangladesh. BMC Public Health 13:417CrossRefGoogle Scholar
  9. Jing J, Zheng G, Liu M et al (2012) Changes in the synaptic structure of hippocampal neurons and impairment of spatial memory in a rat model caused by chronic arsenite exposure. Neurotoxicology 33:1230–8. doi: 10.1016/j.neuro.2012.07.003 CrossRefGoogle Scholar
  10. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9:505–518. doi: 10.1038/nrn2417.MITOCHONDRIAL CrossRefGoogle Scholar
  11. Kumar P, Gao Q, Ning Y et al (2008) Arsenic trioxide enhances the therapeutic efficacy of radiation treatment of oral squamous carcinoma while protecting bone. Mol Cancer Ther 7:2060–9. doi: 10.1158/1535-7163.MCT-08-0287 CrossRefGoogle Scholar
  12. Li X, Ding XATE (2003) Arsenic trioxide induces apoptosis in pancreatic cancer cells via c. Pancreas 27:147–9Google Scholar
  13. Liu S, Piao F, Sun X et al (2012) Arsenic-induced inhibition of hippocampal neurogenesis and its reversibility. Neurotoxicology 33:1033–9. doi: 10.1016/j.neuro.2012.04.020 CrossRefGoogle Scholar
  14. Lizard G, Fournel S, Genestier L, Dhedin N, Chaput C, Flacher M, Mutin M, Panaye GRJ (1995) Kinetics of plasma membrane and mitochondrial alterations in cells. Cytometry 21:275–83CrossRefGoogle Scholar
  15. Luo J, Qiu Z, Shu W et al (2009) Effects of arsenic exposure from drinking water on spatial memory, ultra-structures and NMDAR gene expression of hippocampus in rats. Toxicol Lett 184:121–5. doi: 10.1016/j.toxlet.2008.10.029 CrossRefGoogle Scholar
  16. Ma DC, Sun YH, Chang KZ, Ma XF, Huang SL, Bai YH, Kang J, Liu YGCJ (1998) Selective induction of apoptosis of NB4 cells from G2 + M phase by so. Eur J Haematol 61:27–35CrossRefGoogle Scholar
  17. Martinez-Finley EJ, Ali A-MS, Allan AM (2009) Learning deficits in C57BL/6J mice following perinatal arsenic exposure: consequence of lower corticosterone receptor levels? Pharmacol Biochem Behav 94:271–7. doi: 10.1016/j.pbb.2009.09.006 CrossRefGoogle Scholar
  18. Naranmandura H, Xu S, Sawata T et al (2011) Mitochondria are the main target organelle for trivalent monomethylarsonous acid (MMA III)-induced cytotoxicity. Chim resaerch Toxicol 24:1094–1103CrossRefGoogle Scholar
  19. Nury T, Samadi M, Varin A, Lopez T, Zarrouk A, Boumhras M, Riedinger JM, Masson D, Vejux ALG (2013) Thomas1.pdfBiological activities of the LXRα and β agonist, 4β-hydroxycholesterol, and of its isomer, 4α-hydroxycholesterol, on oligodendrocytes: effects on cell growth and viability, oxidative and inflammatory status. Biochimie 95:518–30CrossRefGoogle Scholar
  20. O’Bryant SE, Edwards M, Menon CV et al (2011) Long-term low-level arsenic exposure is associated with poorer neuropsychological functioning: a Project FRONTIER study. Int J Environ Res Public Health 8:861–74. doi: 10.3390/ijerph8030861 CrossRefGoogle Scholar
  21. P Grandjean PL (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368:2167–2178CrossRefGoogle Scholar
  22. Ragot K, Mackrill JJ, Zarrouk A et al (2013) Absence of correlation between oxysterol accumulation in lipid raft microdomains, calcium increase, and apoptosis induction on 158N murine oligodendrocytes. Biochem Pharmacol 86:67–79. doi: 10.1016/j.bcp.2013.02.028 CrossRefGoogle Scholar
  23. Scholzen T, Gerdes J (2000a) The Ki-67 protein: from the known and. J Cell Physiol 322:311–322CrossRefGoogle Scholar
  24. Scholzen T, Gerdes J (2000b) The Ki-67 protein from the known and the unknown. J Cell Physiol 182:311CrossRefGoogle Scholar
  25. Shen Z, Shen J, Li Q et al (2002) Morphological and functional changes of mitochondria in apoptotic esophageal carcinoma cells induced by arsenic trioxide. Esophageal Cancer 8:31–35Google Scholar
  26. Sidhu JS, Ponce RA, Vredevoogd MA et al (2006) Cell cycle inhibition by sodium arsenite in primary embryonic rat midbrain neuroepithelial cells. Toxicol Sci 89:475–84. doi: 10.1093/toxsci/kfj032 CrossRefGoogle Scholar
  27. Singh MK, Yadav SS, Gupta V, Khattri S (2013) Immunomodulatory role of Emblica officinalis in arsenic induced oxidative damage and apoptosis in thymocytes of mice. BMC Complement Altern Med 13:193. doi: 10.1186/1472-6882-13-193 CrossRefGoogle Scholar
  28. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85CrossRefGoogle Scholar
  29. Tadepalle N, Koehler Y, Brandmann M et al (2014) Arsenite stimulates glutathione export and glycolytic flux in viable primary rat brain astrocytes. Neurochem Int 76:1–11. doi: 10.1016/j.neuint.2014.06.013 CrossRefGoogle Scholar
  30. Tournel G, Houssaye C, Humbert L et al (2011) Acute arsenic poisoning: clinical, toxicological, histopathological, and forensic features. J Forensic Sci 56(Suppl 1):S275–9. doi: 10.1111/j.1556-4029.2010.01581.x CrossRefGoogle Scholar
  31. Tsai S-Y, Chou H-Y, The H-W et al (2003) The effects of chronic arsenic exposure from drinking water on the neurobehavioral development in adolescence. Neurotoxicology 24:747–53. doi: 10.1016/S0161-813X(03)00029-9 CrossRefGoogle Scholar
  32. Tyler CR, Allan AM (2013) Adult hippocampal neurogenesis and mRNA expression are altered by perinatal arsenic exposure in mice and restored by brief exposure to enrichment. PLoS One 8:e73720. doi: 10.1371/journal.pone.0073720 CrossRefGoogle Scholar
  33. Vahter ME (2007) Interactions between arsenic-induced toxicity and nutrition in early life. J Nutr 137:2798–804Google Scholar
  34. Wang TS, Kuo CF, Jan KYHH (1996) Arsenite induces apoptosis in Chinese hamster ovary cells by genera. J Cell Physiol 169:256–68CrossRefGoogle Scholar
  35. Wasserman GA, Liu X, Graziano JH (2007) Water arsenic exposure and intellectual function in 6-year-old children in Araihazar, Bangladesh. Environ Health Perspect 115:285–9CrossRefGoogle Scholar
  36. Yen CC, Ho TJ, Wu CC, Chang CF, Chin Chuan S, Chen YW, Jinn TR, Lu TH, Cheng PW, Yi Chang S, Shing Hwa Liu CFH (2011) Inorganic arsenic causes cell apoptosis in mouse cerebrum through an oxidative stress-regulated signaling pathway. Arch Toxicol 85(565):575Google Scholar
  37. Zarrouk A, Vejux A, Nury T et al (2012) Induction of mitochondrial changes associated with oxidative stress on very long chain fatty acids (C22:0, C24:0, or C26:0)-treated human neuronal cells (SK-NB-E). Oxid Med Cell Longev 2012:623257. doi: 10.1155/2012/623257 CrossRefGoogle Scholar
  38. Zhang L, Wang K, Zhao F et al (2012) Near infrared imaging of EGFR of oral squamous cell carcinoma in mice administered arsenic trioxide. PLoS One 7:e46255. doi: 10.1371/journal.pone.0046255 CrossRefGoogle Scholar
  39. Zhang J, Liu X, Zhao L et al (2013) Subchronic exposure to arsenic disturbed the biogenic amine neurotransmitter level and the mRNA expression of synthetase in mice brains. Neuroscience 241:52–8. doi: 10.1016/j.neuroscience.2013.03.014 CrossRefGoogle Scholar
  40. Zierold KM, Knobeloch L, Anderson H (2004) Prevalence of chronic diseases in adults exposed to drinking water. Am J Public Heal 94:1936–1937CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Wafa Kharroubi
    • 1
    • 2
    Email author
  • Samia Haj Ahmed
    • 1
    • 2
  • Thomas Nury
    • 1
  • Pierre Andreoletti
    • 1
  • Zohra Haouas
    • 3
  • Amira Zarrouk
    • 1
    • 2
  • Rachid Sakly
    • 2
  • Mohamed Hammami
    • 2
  • Gérard Lizard
    • 1
  1. 1.University Bourgogne Franche Comté, Université de Bourgogne Laboratoire Bio-PeroxIL, ‘Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique’ EA7270 / INSERM, Faculté des Sciences GabrielDijonFrance
  2. 2.Laboratoire de biochimie « Nutrition -aliments fonctionnels et santé vasculaire « LR- NAFS LR12ES05, Faculté de MédecineMonastirTunisie
  3. 3.Unité de recherche de génétique « Histologie et de Cytogénétique 02/UR/ 08–03 »Faculté de Médecine de MonastirMonastirTunisie

Personalised recommendations