Environmental Science and Pollution Research

, Volume 23, Issue 12, pp 11461–11470 | Cite as

The size distribution of organic carbon in headwater streams in the Amazon basin

  • Joana D’Arc de PaulaEmail author
  • Flávio Jesus Luizão
  • Maria Teresa Fernandez Piedade
Pollution Issues of Large Rivers


Despite the strong representativeness of streams in the Amazon basin, their role in the accumulation of coarse particulate organic carbon (CPOC), fine particulate organic carbon (FPOC), and dissolved organic carbon (DOC) in transport, an important energy source in these environments, is poorly known. It is known that the arboreal vegetation in the Amazon basin is influenced by soil fertility and rainfall gradients, but would these gradients promote local differences in organic matter in headwater streams? To answer this question, 14 low-order streams were selected within these gradients along the Amazon basin, with extensions that varied between 4 and 8 km. The efficiency of the transformation of particulate into dissolved carbon fractions was assessed for each stream. The mean monthly benthic organic matter storage ranged between 1.58 and 9.40 t ha−1 month−1. In all locations, CPOC was the most abundant fraction in biomass, followed by FPOC and DOC. Rainfall and soil fertility influenced the distribution of the C fraction (p = 0.01), showing differentiated particulate organic carbon (POC) storage and DOC transportation along the basin. Furthermore, the results revealed that carbon quantification at the basin level could be underestimated, ultimately influencing the global carbon calculations for the region. This is especially due to the fact that the majority of studies consider only fine particulate organic matter and dissolved organic matter, which represent less than 50 % of the stored and transported carbon in streambeds.


Benthic organic matter Coarse particulate organic carbon Fine particulate organic carbon Dissolved organic carbon Tropical streams Global carbon cycle 



We are thankful to the following projects and programs for financial and logistical support: Large Scale Program of Biosphere-Atmosphere in the Amazon - LBA, Ecology, Monitoring and Sustainable Use of Flooding Areas - MAUA, Amazon Forest Inventory Network - RAINFOR, Cenários para a Amazônia: Uso da terra, Biodiversidade e Clima, Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq/Edital Universal (14/2008), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES. We also thank all field assistants: Paulão, Milton, Mr. Robson, Demetrius, Nina, Yamileth, Osmar, and Romilda; to Wallace Costa for helping with the maintenance of equipment, Jonis Souza and Carmen Conrad for carrying out DOC analyses, and Mariana de Paula and Dr. A. Leyva for helping with English editing of the manuscript.


  1. Abelho M (2001) From litterfall to breakdown in streams. Sci World 1:656–680. doi: 10.1100/tsw.2001.103 CrossRefGoogle Scholar
  2. Abelho M, Graça MAS (1998) Litter in a first-order stream of a temperate deciduous forest (Margaraça Forest, central Portugal). Hydrobiologia 386:147–152CrossRefGoogle Scholar
  3. Alvarez-Cobelas M, Angeler DG, Sánchez-Carrillo S, Almendros G (2012) A worldwide view of organic carbon export from catchments. Biogeochemistry 107:275–293. doi: 10.1007/s10533-010-9553-z CrossRefGoogle Scholar
  4. Aragão LEOC, Malhi Y, Metcalfe DB et al (2009) Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences 6:2759–2778CrossRefGoogle Scholar
  5. Baker TR, Phillips OL, Malhi Y et al (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob Change Biol 10:545–562. doi: 10.1111/j.1529-8817.2003.00751.x CrossRefGoogle Scholar
  6. Bilby RE, Likens GE (1979) Effect of hydrologic fluctuations on the transport of fine particulate organic carbon in a small stream. Limnol Oceanogr 24:69–75CrossRefGoogle Scholar
  7. Bilby RE, Likens GE (1980) Importance of organic debris dams in the structure and function of stream ecosystems. Ecology 61:1107–1113CrossRefGoogle Scholar
  8. Blair NE, Leithold EL, Aller RC (2004) From bedrock to burial: the evolution of particulate organic carbon across coupled watershed-continental margin systems. Mar Chem 92:141–156CrossRefGoogle Scholar
  9. Bouchez J, Galy V, Hilton RG et al (2014) Source, transport and fluxes of Amazon River particulate organic carbon: insights from river sediment depth-profiles. Geochim Cosmochim Ac 133:280–298CrossRefGoogle Scholar
  10. Clark KE, Malhi Y, New M et al (2013) New views on “old” carbon in the Amazon River: insight from the source of organic carbon eroded from the Peruvian Andes. Geochem Geophy Geosy 14:1644–1659. doi: 10.1002/ggge.20122 CrossRefGoogle Scholar
  11. Cólon-Gaud C, Peterson S, Whiles MR et al (2008) Allochthonous litter inputs, organic matter standing stocks, and organic seston dynamics in upland Panamanian streams: potential effects of larval amphibians on organic matter dynamics. Hydrobiologia 603:301–312. doi: 10.1007/s10750-008-9294-3 CrossRefGoogle Scholar
  12. Cummins KW (1974) Structure and function of stream ecosystems. Bioscience 24:631–641. doi: 10.1016/j.gca.2014.02.032 CrossRefGoogle Scholar
  13. Cushing CE, Minshall GW, Newbold JD (1993) Transport dynamics of fine particulate organic matter in two Idaho streams Colbert. Limnol Oceanogr 38:1101–1115CrossRefGoogle Scholar
  14. Fisher SG, Likens GE (1973) Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecol Monogr 43:421–439CrossRefGoogle Scholar
  15. Fittkau EJ (1971) Distribution and ecology of Amazonian chironomids (Diptera). Can Entomol 103:407–413CrossRefGoogle Scholar
  16. França JS, Gregório RS, Paula JD et al (2009) Composition and dynamics of allochthonous organic matter inputs and benthic stock in a Brazilian stream. Mar Freshwater Res 60:990–998. doi: 10.1071/MF08247 CrossRefGoogle Scholar
  17. Golladay SW (1997) Suspended particulate organic matter concentration and export in streams. J N Am Benthol Soc 16:122–131CrossRefGoogle Scholar
  18. Hedges JI, Mayorga E, Tsamakis E et al (2000) Organic matter in Bolivian tributaries of the Amazon River: a comparison to the lower mainstream. Limnol Oceanogr 45:1449–1466CrossRefGoogle Scholar
  19. Hilton RG, Galy A, Hovius N et al (2011) Efficient transport of fossil organic carbon to the ocean by steep mountain rivers: an orogenic carbon sequestration mechanism. Geology 39:71–74. doi: 10.1130/G31352.1 CrossRefGoogle Scholar
  20. Johnson MS, Lehmann J, Selva EC et al (2006) Organic carbon fluxes within and streamwater exports from headwater catchments in the southern Amazon. Hydrol Process 20:2599–2614. doi: 10.1002/hyp.6218 CrossRefGoogle Scholar
  21. Jones JB (1997) Benthic organic matter storage in streams: influence of detrital import and export, retention mechanisms, and climate. J N Am Benthol Soc 16:109–119CrossRefGoogle Scholar
  22. Kawasaki M, Ohte N, Kabeya N, Katsuyama M (2008) Hydrological control of dissolved organic carbon dynamics in a forested headwater catchment, Kiryu Experimental Watershed, Japan. Hydrol Process 442:429–442. doi: 10.1002/hyp.6615 CrossRefGoogle Scholar
  23. Luizão FJ, Schubart HOR (1987) Litter production and decomposition in a terra-firme forest of Central Amazonian. Experientia 43:259–265CrossRefGoogle Scholar
  24. Luizão RCC, Luizão FJ, Paiva RQ, Monteiro TF et al (2004) Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest. Global Change Biol 10:592–600. doi: 10.1111/j.1529-8817.2003.00757.x CrossRefGoogle Scholar
  25. Malhi Y, Wood D, Baker T et al (2006) The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biol 12:1107–1138. doi: 10.1111/j.1365-2486.2006.01120.x CrossRefGoogle Scholar
  26. Mathooko JM, Morara GO, Leichtfried M (2001) Leaf litter transport and retention in a tropical Rift Valley stream: an experimental approach. Hydrobiologia 443:9–18CrossRefGoogle Scholar
  27. Mayorga E, Aufdenkampe AK, Masiello CA et al (2005) Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436:538–541. doi: 10.1038/nature03880 CrossRefGoogle Scholar
  28. McClain ME, Elsenbeer H (2001) Terrestrial Inputs to Amazon Streams and Internal Biogeochemical Processing. In: McClain ME, Victoria RL, Richey JE (ed) The biogeochemistry of the Amazon Basin. Oxford University Press, Oxford, New York, pp 185–208Google Scholar
  29. Minshall GW, Petersen RC, Cummins KW et al (1983) Interbiome comparison of stream ecosystem dynamics. Ecol Monogr 53:1–25CrossRefGoogle Scholar
  30. Monteiro, MTF (2005) Interações na dinâmica do carbono e nutrientes da liteira entre a floresta de terra-firme e o igarapé de drenagem na Amazônia Central. Dissertation, Instituto Nacional de Pesquisas da AmazôniaGoogle Scholar
  31. Moore TR (1989) Dynamics of dissolved organic carbon in forested and disturbed catchments, Wetland, New Zeland 1. Maimai. Water Resour Res 25:1321–1330CrossRefGoogle Scholar
  32. Moreira-Turcq P, Seyler P, Guyot JL et al (2003) Exportation of organic carbon from the Amazon River and its main tributaries. Hydrol Process 17:1329–1344. doi: 10.1002/hyp.1287 CrossRefGoogle Scholar
  33. Oksanen J, Blanchet FG, Kindt R et al. (2010) Vegan: Community Ecology PackageGoogle Scholar
  34. Paradise CJ, Kuhn KL (1999) Interactive effects of pH and leaf litter on a shredder, the scirtid beetle, Helodes pulchella, inhabiting tree-holes. Freshwater Biol 41:43–49CrossRefGoogle Scholar
  35. Quay PD, Wilbur DO, Richey JE et al (1992) Carbon cycling in the Amazon River: implications from the 13 C compositions of particles and solutes. Limnol Oceanogr 37:857–871CrossRefGoogle Scholar
  36. Quesada CA, Lloyd J, Anderson LO et al (2011) Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8:1415–1440. doi: 10.5194/bg-8-1415-2011 CrossRefGoogle Scholar
  37. Richey JE, Meade RH, Salati E et al (1986) Water discharge and suspended sediment concentrations in the Amazon River: 1982–1984. Water Res 22:756–764CrossRefGoogle Scholar
  38. Richey JE, Melack JM, Aufdenkampe AK et al (2002) Outgassing from Amazonian Rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620CrossRefGoogle Scholar
  39. Schlesinger WH, Melack JM (1981) Transport of organic carbon in the world’s rivers. Tellus 33:172–187CrossRefGoogle Scholar
  40. Small MJ, Doyle MW, Fuller RL, Manners RB (2008) Hydrologic versus geomorphic limitation on CPOM storage in stream ecosystems. Freshwater Biol 53:1618–1631. doi: 10.1111/j.1365-2427.2008.01999.x CrossRefGoogle Scholar
  41. Sombroek WG (1966) Amazon Soils. A reconnaissance of the soils of the Brazilian Amazon Region. Centre for Agricultural Publications and Documentation, NetherlandsGoogle Scholar
  42. Sombroek W (2001) Spatial and temporal patterns of Amazon rainfall. Ambio 30:388–396. doi: 10.1579/0044-7447-30.7.388 CrossRefGoogle Scholar
  43. Speaker R, Moore K, Gregory S (1984) Analysis of the process of retention of organic matter in stream ecosystems. Internat Verein Limnol 22:1835–1841Google Scholar
  44. Suberkropp K (1998) Microorganisms and organic matter decomposition. In: Naiman RJ, Bilby RE (eds) The river ecology and management: lessons from the pacific coastal ecoregion. Springer Verlag, New York, pp 120–143CrossRefGoogle Scholar
  45. Ter Steege H, Pitman N, Sabatier D et al (2003) A spatial model of tree α-diversity and -density for the Amazon region. Biodivers Conserv 12:2255–2277CrossRefGoogle Scholar
  46. Ter Steege H, Pitman NCA, Phillips OL et al (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447. doi: 10.1038/nature05134 CrossRefGoogle Scholar
  47. Tobón C, Sevink J, Verstraten JM (2004) Litterflow chemistry and nutrient uptake from the forest floor in northwest Amazonian forest ecosystems. Biogeochemistry 69:315–339. doi: 10.1023/B:BIOG.0000031051.29323.27 CrossRefGoogle Scholar
  48. Townsend-Small A, McClain ME, Hall B et al (2008) Suspended sediments and organic matter in mountain headwaters of the Amazon River: results from a 1-year time series study in the central Peruvian Andes. Geochim Cosmochim Ac 72:732–740. doi: 10.1016/j.gca.2007.11.020 CrossRefGoogle Scholar
  49. Wallace JB, Ross DH, Meyer JL (1982) Seston and dissolved organic carbon dynamics in a southern Appalachian stream. Ecology 63:824–838CrossRefGoogle Scholar
  50. Wallace JB, Cuffney TF, Eggert SL et al (1997) Stream organic matter inputs, storage, and export for Satellite Branch at Coweeta Hydrologic Laboratory, North Carolina, USA. J N Am Benthol Soc 16:67–74CrossRefGoogle Scholar
  51. Ward ND, Keil RG, Medeiros PM et al (2013) Degradation of terrestrially derived macromolecules in the Amazon River. Nat Geosci 6:530–533. doi: 10.1038/NGE01817 CrossRefGoogle Scholar
  52. Webster JR, Covich AP, Tank JL et al (1994) Retention of coarse organic particles in streams in the southern Appalachian mountains. J N Am Benthol Soc 13:140–150CrossRefGoogle Scholar
  53. Webster JR, Meyer JL, Wallace JB et al (1997) Organic matter budgets for streams: a synthesis. J N Am Benthol Soc 16:74–78CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Joana D’Arc de Paula
    • 1
    • 2
    • 3
    Email author
  • Flávio Jesus Luizão
    • 3
  • Maria Teresa Fernandez Piedade
    • 4
  1. 1.Instituto Nacional de Pesquisas da Amazônia/CPEC–Coordenação de Pesquisas em EcologiaManausBrazil
  2. 2.Universidade Nilton Lins–Coordenação de Pós Graduação em Biologia UrbanaManausBrazil
  3. 3.Large Scale Program on Biosphere-Atmosphere Interactions in Amazonia - LBAInstituto Nacional de Pesquisas da AmazôniaManausBrazil
  4. 4.Coordenação de Pesquisas em Biologia Aquática, Ecology, Monitoring and Sustainable Use of Flooding Areas - MAUAInstituto Nacional de Pesquisas da AmazôniaManausBrazil

Personalised recommendations