Environmental Science and Pollution Research

, Volume 24, Issue 13, pp 11919–11939 | Cite as

Integrative evaluation of data derived from biomonitoring and models indicating atmospheric deposition of heavy metals

  • Stefan Nickel
  • Winfried Schröder
Biomonitoring of atmospheric pollution: possibilities and future challenges


Atmospheric deposition of heavy metals (HM) can be determined by use of numeric models, technical devices and biomonitors. Mainly focussing on Germany, this paper aims at evaluating data from deposition modelling and biomonitoring programmes. The model LOTOS-EUROS (LE) yielded data on HM deposition at a spatial resolution of 25 km by 25 km throughout Europe. The European Monitoring and Evaluation Programme (EMEP) provided model calculations on 50 km by 50 km grids. Corresponding data on HM concentration in moss, leaves and needles and soil were derived from the European Moss Survey (EMS), the German Environmental Specimen Bank (ESB) and the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (iCP Forests). The modelled HM deposition and respective concentrations in moss (EMS), leaves and needles (ESB, iCP Forests) and soil (iCP Forests) were investigated for their statistical relationships. Regression equations were applied on geostatistical surface estimations of HM concentration in moss and then the residuals were interpolated by use of kriging interpolation. Both maps were summed up to a map of cadmium (Cd) and lead (Pb) deposition across Germany. Biomonitoring data were strongly correlated to LE than to EMEP. For HM concentrations in moss, the highest correlations were found for the association between geostatistical surface estimations of HM concentration in moss and deposition (LE).


Deposition modelling EMEP Environmental Specimen Bank European Moss Survey Heavy metals ICP Forests LOTOS-EUROS 



This research paper was only possible through the help and support of the Federal Environmental Agency, Dessau, Germany, the Meteorological Synthesizing Centre - East (MSC-E), Moscow, Russia, and the ICP Vegetation Coordination Centre, Centre for Ecology and Hydrology, Bangor, UK.

Authors’ contributions

WS headed the investigation and the computations executed by SN. Both authors participated in writing the article and read and approved the final manuscript.

Supplementary material

11356_2015_6006_MOESM1_ESM.docx (3.3 mb)
ESM 1 (DOCX 3405 kb)


  1. Becker K, Schroeter-Kermani C, Seiwert M, Rüther M, Conrad A, Schulz C, Wilhelm M, Wittsiepe J, Günsel A, Dobler L, Kolossa-Gehring M (2013) German health-related environmental monitoring: assessing time trends of the general population’s exposure to heavy metals. Int J Hyg Environ Health 216(3):250–254CrossRefGoogle Scholar
  2. BMVEL (2006) Arbeitsanleitung für die zweite Bodenzustandserhebung im Wald (BZE II), 2nd edn. Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft (BMVEL), BerlinGoogle Scholar
  3. Breiman L (2001) Random Forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  4. Brosius F (2013) SPSS 21. Mitp/bhv, 1. Aufl., Verlag C. H. Beck, Heidelberg, 1054 pGoogle Scholar
  5. Builtjes P, Schaap M, Wichink Kruit R, Nagel HD, Nickel S, Schröder W (2014) Impacts of heavy metal emissions on air quality and ecosystems in Germany. 1st Progress Report on behalf of the German Federal Environmental Agency, Dessau. April 2014Google Scholar
  6. Ceburnis D, Steinnes E (2000) Conifer needles as biomonitors of atmospheric heavy metal deposition: comparison with mosses and precipitation, role of canopy. Atmospheric Environment 34:4265–4271Google Scholar
  7. Ferretti M, Fischer RF (eds) (2013) Methods for terrestrial investigations in Europe with an overview of North America and Asia. Developments in environmental science 12. Elsevier, Amsterdam, pp. 1–507Google Scholar
  8. Goovaerts P (1999) Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89(1-2):1–45CrossRefGoogle Scholar
  9. Harmens H, Mills G, Hayes F, Norris D, Sharps K (2015) Twenty eight years of iCP Vegetation. An overview of its activities. Ann Bot 5:31–43Google Scholar
  10. Hengl T, Heuvelink GBM, Stein A (2004) A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 120(1-2):75–93CrossRefGoogle Scholar
  11. Hennemuth B, Bender S, Bülow K, Dreier N, Keup-Thiel E, Krüger O, Mudersbach C, Radermacher C, Schoetter R (2013) Statistical methods for the analysis of simulated and observed climate data, applied in projects and institutions dealing with climate change impact and adaptation. CSC Report 13. Climate Service Center, Germany, pp 1–135Google Scholar
  12. Hilbrig L, Wellbrock N, Bielefeldt J (2014) Harmonisierte Bestandesinventur. Zweite Bundesweite Bodenzustandserhebung BZE II, Methode. Eberswalde: Johann Heinrich von Thünen-Institut. Thünen Working Paper 26:1–52Google Scholar
  13. iCP Vegetation (International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops) (2014) Monitoring of atmospheric deposition of heavy metals, nitrogen and POPs in Europe using bryophytes. Monitoring manual 2015 survey. United Nations Economic Commission for Europe Convention on Long-Range Transboundary Air Pollution. ICP Vegetation Moss Survey Coordination Centre, Dubna, Russian Federation, and Programme Coordination Centre. Bangor, Wales, UK, p 1-26Google Scholar
  14. Johnston K, Ver Hoef JM, Krivoruchko K, Lucas N (2001) Using ArcGIS Geostatistical Analyst. Redlands. 300 pGoogle Scholar
  15. Kendall M, Gibbons JD (1990) Rank correlation methods, 5th edn. Edward Arnold, London, pp 1–260Google Scholar
  16. Meyer M, Schröder W, Nickel S, Leblond S, Lindroos AJ, Mohr K, Poikolainen J, Santamaria JM, Skudnik M, Thöni L, Beudert B, Dieffenbach-Fries H, Schulte-Bisping H, Zechmeister HG (2015a) Relevance of canopy drip for the accumulation of nitrogen in moss used as biomonitors for atmospheric nitrogen deposition in Europe. Sci Total Environ 538:600–610CrossRefGoogle Scholar
  17. Meyer M, Schröder W, Pesch R, Steinnes E, Uggerud HT (2015b) Multivariate association of regional factors with heavy metal concentrations in moss and natural surface soil sampled across Norway between 1990 and 2010. J Soils Sediments 14(11):1–15Google Scholar
  18. Mohr K, Schröder W (2014) Erfassung atmosphärischer Stoffeinträge mit komplementären Methoden. Plädoyer anlässlich des Fachgesprächs atmosphärische Deposition am 10. und 11. Februar 2014. Umweltbundesamt, DessauGoogle Scholar
  19. Nickel S, Hertel A, Pesch R, Schröder W, Steinnes E, Uggerud HT (2014) Modelling and mapping spatio-temporal trends of heavy metal accumulation in moss and natural surface soil monitored 1990–2010 throughout Norway by multivariate generalized linear models and geostatistics. Atmos Environ 99:85–93CrossRefGoogle Scholar
  20. Odeh IOA, McBratney AB, Chittleborough DJ (1995) Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma 67(3-4):215–226CrossRefGoogle Scholar
  21. Pesch R, Schröder W (2006) Integrative exposure assessment through classification and regression trees on bioaccumulation of metals, related sampling site characteristics and ecoregions. Ecol Inform 1(1):55–65CrossRefGoogle Scholar
  22. Pesch R, Schröder W, Genssler L, Goeritz A, Holy M, Kleppin, L, Matter Y (2007) Moos-Monitoring 2005 / 2006: Schwermetalle IV und Gesamtstickstoff. - Berlin (Umweltforschungsplan des Bundesministers für Umwelt, Naturschutz und Reaktorsicherheit. FuE-Vorhaben 205 64 200, Abschlussbericht, im Auftrag des Umweltbundesamtes); 90 S., 11 Tab., 2 Abb. (Texteil); 51 S. + 41 Karten, 34 Tabellen, 46 Diagramme (Anhangsteil)Google Scholar
  23. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  24. Rüdel H, Schröder W, von der Trenck KT, Wiesmüller GA (2009) Substance-related environmental monitoring. Work group ‘Environmental Monitoring’—Position paper. Environ Sci Pollut Res 16(5):486–498CrossRefGoogle Scholar
  25. Sachs L, Hedderich J (2009) Angewandte Statistik. Methodensammlung mit. Springer-Verlag, Berlin, pp 1–813Google Scholar
  26. Schaap M, Sauter F, Timmermans RMA, Roemer M, Velders G, Beck J, Builjes PJH (2008) The LOTOS–EUROS model: description, validation and latest developments. Int J Environ Pollut 32(2):270–290CrossRefGoogle Scholar
  27. Schröder W, Pesch R (2005) Time series of metals in mosses and their correlation with selected sampling site-specific and ecoregional characteristics in Germany. Environ Sci Pollut Res 12(3):159–167CrossRefGoogle Scholar
  28. Schröder W, Hornsmann I, Pesch R, Schmidt G, Markert B, Fränzle S, Wünschmann S, Heidenreich H (2007) Nitrogen and metals in two regions in Central Europe: significant differences in accumulation in mosses due to land use? Environ Monit Assess 133:495–505CrossRefGoogle Scholar
  29. Schröder W, Holy M, Pesch R et al (2011) Mapping atmospheric depositions of cadmium and lead in Germany based on EMEP deposition data and the European Moss Survey 2005. Environ Sci Eur 23(19):1–14Google Scholar
  30. Schröder W, Pesch R, Schönrock S, Harmens H, Mills G, Fagerli H (2014) Mapping correlations between nitrogen concentrations in atmospheric deposition and mosses for natural landscapes in Europe. Ecol Indic 36:563–571CrossRefGoogle Scholar
  31. Tørseth K, Aas W, Breivik K, Fjæraa M, Fiebig M, Hjellbrekke AG, Lund Myhre C, Solberg S, Yttri KE (2012) Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmos Chem Phys 12:5447–5481CrossRefGoogle Scholar
  32. Travnikov O, Ilyin I (2005) Regional model MSCE-HM of heavy metal transboundary air pollution in Europe. EMEP/MSC-E Technical report 6/2005Google Scholar
  33. Truhaut R (1977) Ecotoxicology: objectives, principles, and perspectives. Ecotoxicol Environ Saf 1:151–173CrossRefGoogle Scholar
  34. UBA (2008) Umweltprobenbank des Bundes – Konzeption (Stand: Oktober 2008). Available at:

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.University of Vechta—Chair of Landscape EcologyVechtaGermany

Personalised recommendations