Environmental Science and Pollution Research

, Volume 23, Issue 8, pp 7582–7594 | Cite as

Metal uptake of Nerium oleander from aerial and underground organs and its use as a biomonitoring tool for airborne metallic pollution in cities

  • S. Vázquez
  • A. Martín
  • M García
  • C. Español
  • E. Navarro
Research Article

Abstract

The analysis of the airborne particulate matter—PM—incorporated to plant leaves may be informative of the air pollution in the surroundings, allowing their use as biomonitoring tools. Regarding metals, their accumulation in leaves can be the result of both atmospheric incorporation of metallic PM on aboveground plant organs and root uptake of soluble metals. In this study, the use of Nerium oleander leaves as a biomonitoring tool for metallic airborne pollution has been assessed. The metal uptake in N. oleander was assessed as follows: (a) for radicular uptake by irrigation with airborne metals as Pb, Cd, Cr, Ni, As, Ce and Zn (alone and in mixture) and (b) for direct leave exposure to urban PM. Plants showed a high resistance against the toxicity of metals under both single and multiple metal exposures. Except for Zn, the low values of translocation and bioaccumulation factors confirmed the excluder behaviour of N. oleander with respect to the metals provided by the irrigation. For metal uptake from airborne pollution, young plants grown under controlled conditions were deployed during 42 days in locations of the city of Zaragoza (700,000 h, NE Spain), differing in their level of traffic density. Samples of PM2.5 particles and the leaves of N. oleander were simultaneously collected weekly. High correlations in Pb concentrations were found between leaves and PM2.5; in a lesser extent, correlations were also found for Fe, Zn and Ti. Scanning electron microscopy showed the capture of airborne pollution particles in the large and abundant substomatal chambers of N. oleander leaves. Altogether, results indicate that N. Oleander, as a metal resistant plant by metal exclusion, is a suitable candidate as a biomonitoring tool for airborne metal pollution in urban areas.

Keywords

Nerium oleander Immission Traffic pollution Inhalable particles PM2.5 Metals Biomonitoring 

Supplementary material

11356_2015_6002_MOESM1_ESM.doc (90 kb)
ESM 1(DOC 89 kb)

References

  1. Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. SpringerGoogle Scholar
  2. Aksoy A, Ozturk MA (1997) Nerium oleander L. as a biomonitor of lead and other heavy metal pollution in Mediterranean environments. Sci Total Environ 205:145–150CrossRefGoogle Scholar
  3. Aksoy A, Hale WHG, Dixon JM (1999) Capsella bursa-pastoris (L.) Medic. as a biomonitor of heavy metals. Sci Total Environ 226:177–186. doi:10.1016/S0048-9697(98)00391-X CrossRefGoogle Scholar
  4. Al-Alawi MM, Mandiwana KL (2007) The use of Aleppo pine needles as a bio-monitor of heavy metals in the atmosphere. J Hazard Mater 148:43–46. doi:10.1016/j.jhazmat.2007.02.001 CrossRefGoogle Scholar
  5. Alloway BJ (1995) Heavy metals in soils. Blackie Academic & ProfessionalGoogle Scholar
  6. Al-Shayeb SM, Al-Rajhi MA, Seaward MRD (1995) The date palm (Phoenix dactylifera L.) as a biomonitor of lead and other elements in arid environments. Sci Total Environ 168:1–10. doi:10.1016/0048-9697(95)04556-G CrossRefGoogle Scholar
  7. Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654. doi:10.1080/01904168109362867 CrossRefGoogle Scholar
  8. BOA (2008) Boletín Oficial de Aragón Orden del 05 de Mayo del 2008, del Departamento de Medio Ambiente, por la que se procede al establecimiento de los niveles genéricos de referencia para la protección de la salud humana de metales pesados y otros elementos traza en suelos de la Comunidad Autónoma de Aragón. Govierno de Aragón, Zaragoza, SpainGoogle Scholar
  9. Cabezas A, González E, Gallardo B, García M, González M, Comín F (2008) Effects of hydrological connectivity on the substrate and understory structure of riparian wetlands in the Middle Ebro River (NE Spain): implications for restoration and management. Aquat Sc 70:361–376CrossRefGoogle Scholar
  10. Çelik A, Kartal AA, Akdoğan A, Kaska Y (2005) Determining the heavy metal pollution in Denizli (Turkey) by using Robinio pseudo-acacia L Environ Int 31:105-112 doi:10.1016/j.envint.2004.07.004
  11. Chojnacka K, Chojnacki A, Górecka H, Górecki H (2005) Bioavailability of heavy metals from polluted soils to plants. Sci Total Environ 337:175–182CrossRefGoogle Scholar
  12. Dongarra G, Sabatino G, Triscari M, Varrica D (2003) The effects of anthropogenic particulate emissions on roadway dust and Nerium oleander leaves in Messina (Sicily, Italy). J Environ Monit 5:766–773. doi:10.1039/b304461k CrossRefGoogle Scholar
  13. Drakatos PA, Kalavrouziotis JK, Drakatos SP (2000) Synergism of Cu and Zn in plants irrigated with processed wastewater. Land Contamination & Reclamation 8:201–207Google Scholar
  14. Fernández Espinosa AJ, Oliva SR (2006) The composition and relationships between trace element levels in inhalable atmospheric particles (PM10) and in leaves of Nerium oleander L. and Lantana camara L. Chemosphere 62:1665–1672CrossRefGoogle Scholar
  15. Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278. doi:10.1016/S0168-1656(02)00218-3 CrossRefGoogle Scholar
  16. Franco A, Rufo L, de la Fuente V (2012) Metal concentration and distribution in plant tissues of Nerium oleander (Apocynaceae, Plantae) from extremely acidic and less extremely acidic water courses in the Río Tinto area (Huelva, Spain). Ecol Eng 47:87–91. doi:10.1016/j.ecoleng.2012.06.024 CrossRefGoogle Scholar
  17. Franco A, Rufo L, Zuluaga J, Fuente V (2013) Metal uptake and distribution in cultured seedlings of Nerium oleander L. (Apocynaceae) from the Río Tinto (Huelva, Spain). Biol Trace Elem Res 155:82–92. doi:10.1007/s12011-013-9761-1 CrossRefGoogle Scholar
  18. Hjortenkrans DST, Bergbäck BG, Häggerud AV (2007) Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005 Environ Sci Technol 41:5224-5230 doi:10.1021/es070198o
  19. Kabata-Pendias A (2004) Soil–plant transfer of trace elements—an environmental issue. Geoderma 122:143–149. doi:10.1016/j.geoderma.2004.01.004 CrossRefGoogle Scholar
  20. Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants. vol v. 1991. CRC PressGoogle Scholar
  21. Kadukova J, Manousaki E, Kalogerakis N (2006) Lead and cadmium accumulation from contaminated soils by Nerium Oleander. Acta Metallurgica Slovaca 12:181–187Google Scholar
  22. Kakareka S, Gromov S, Pacyna J, Kukharchyk T (2004) Estimation of heavy metal emission fluxes on the territory of the NIS. Atmos Environ 38:7101–7109. doi:10.1016/j.atmosenv.2004.03.079 CrossRefGoogle Scholar
  23. Kalavrouziotis IK, Drakatos PA (2002) Irrigation of certain Mediterranean plants with heavy metals. Int J Environ Pollut 18:294–300CrossRefGoogle Scholar
  24. Künzli N et al (2000) Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet 356:795–801CrossRefGoogle Scholar
  25. Marschner H (1995) Mineral nutrition of higher plants. Academic PressGoogle Scholar
  26. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43. doi:10.1046/j.1469-8137.2002.00363.x CrossRefGoogle Scholar
  27. Mingorance MD, Oliva SR (2006) Heavy metals content in N. Oleander leaves as urban pollution assessment. Environ Monit Assess 119:57–68. doi:10.1007/s10661-005-9004-9 CrossRefGoogle Scholar
  28. Mingorance MD, Valdés B, Oliva SR (2007) Strategies of heavy metal uptake by plants growing under industrial emissions. Environ Int 33:514–520. doi:10.1016/j.envint.2007.01.005 CrossRefGoogle Scholar
  29. Niinae M, Nishigaki K, Aoki K (2008) Removal of lead from contaminated soils with chelating agents. Mater Trans 49:2377–2382. doi:10.2320/matertrans.M-MRA2008825 CrossRefGoogle Scholar
  30. Pignata ML, Gudiño GL, Wannaz ED, Plá RR, González CM, Carreras HA, Orellana L (2002) Atmospheric quality and distribution of heavy metals in Argentina employing Tillandsia capillaris as a biomonitor. Environ Pollut 120:59–68. doi:10.1016/S0269-7491(02)00128-8 CrossRefGoogle Scholar
  31. Pope CA, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, Speizer FE, Heath CW (1995) Particulate air pollution as a predictor of mortality in a prospective study of US adults Am J Respir Crit Care Med 151:669-674 doi:10.1164/ajrccm/151.3_Pt_1.669Google Scholar
  32. Rossini Oliva S, Mingorance MD (2006) Assessment of airborne heavy metal pollution by aboveground plant parts. Chemosphere 65:177–182. doi:10.1016/j.chemosphere.2006.03.003 CrossRefGoogle Scholar
  33. Sagardoy R et al (2010) Stomatal and mesophyll conductances to CO2 are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc. New Phytol 187:145–158. doi:10.1111/j.1469-8137.2010.03241.x CrossRefGoogle Scholar
  34. Samara C, Voutsa D (2005) Size distribution of airborne particulate matter and associated heavy metals in the roadside environment. Chemosphere 59:1197–1206. doi:10.1016/j.chemosphere.2004.11.061 CrossRefGoogle Scholar
  35. Sawidis T, Marnasidis A, Zachariadis G, Stratis J (1995) A study of air pollution with heavy metals in Thessaloniki city (Greece) using trees as biological indicators. Arch Environ Contam Toxicol 28:118–124. doi:10.1007/bf00213976 CrossRefGoogle Scholar
  36. Schwartz J, Neas LM (2000) Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren. Epidemiology 11:6–10CrossRefGoogle Scholar
  37. Seaton A, Godden D, MacNee W, Donaldson K (1995) Particulate air pollution and acute health effects. Lancet 345:176–178. doi:10.1016/S0140-6736(95)90173-6 CrossRefGoogle Scholar
  38. USEPA (1996) Air quality criteria for particulate matter. Volume 1 of 3. Environmental Protection Agency, Research Triangle Park, NC. National Center for Environmental Assessment.Google Scholar
  39. Vázquez S, Moreno E, Carpena R (2008) Bioavailability of metals and As from acidified multicontaminated soils: use of white lupin to validate several extraction methods. Environ Geochem Health 30:193–198. doi:10.1007/s10653-008-9143-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • S. Vázquez
    • 2
    • 3
  • A. Martín
    • 1
    • 2
  • M García
    • 1
    • 2
  • C. Español
    • 1
    • 2
  • E. Navarro
    • 1
    • 2
  1. 1.Pyrenean Institute of Ecology-CSICZaragozaSpain
  2. 2.San Jorge University. Campus Universitario Villanueva de Gállego - Autovía A-23Villanueva de GállegoSpain
  3. 3.School of BiosciencesUniversity of Nottingham, Sutton Bonington CampusLeicestershire, LoughboroughUK

Personalised recommendations