Environmental Science and Pollution Research

, Volume 23, Issue 11, pp 10577–10586 | Cite as

Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment

  • Yue Song
  • Mohamed-Tahar Ammami
  • Ahmed BenamarEmail author
  • Salim Mezazigh
  • Huaqing Wang
Recent sediments: environmental chemistry, ecotoxicology and engineering


In recent years, electrokinetic (EK) remediation method has been widely considered to remove metal pollutants from contaminated dredged sediments. Chelating agents are used as electrolyte solutions to increase metal mobility. This study aims to investigate heavy metal (HM) (As, Cd, Cr, Cu, Ni, Pb and Zn) mobility by assessing the effect of different chelating agents (ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS), nitrilotriacetic acid (NTA) or citric acid (CA)) in enhancing EK remediation efficiency. The results show that, for the same concentration (0.1 mol L−1), EDTA is more suitable to enhance removal of Ni (52.8 %), Pb (60.1 %) and Zn (34.9 %). EDDS provides effectiveness to increase Cu removal efficiency (52 %), while EDTA and EDDS have a similar enhancement removal effect on As EK remediation (30.5∼31.3 %). CA is more suitable to enhance Cd removal (40.2 %). Similar Cr removal efficiency was provided by EK remediation tests (35.6∼43.5 %). In the migration of metal–chelate complexes being directed towards the anode, metals are accumulated in the middle sections of the sediment matrix for the tests performed with EDTA, NTA and CA. But, low accumulation of metal contamination in the sediment was observed in the test using EDDS.


Electrokinetic Remediation Chelates Heavy metals Dredged sediment Removal 



This work was supported by Haute-Normandie Region (France) in the framework of the research network SCALE, within SEDEVAR project.


  1. Abbas MHH, Abdelhafez AA (2013) Role of EDTA in arsenic mobilization and its uptake by maize grown on an As-polluted soil. Chemosphere 90:588–594. doi: 10.1016/j.chemosphere.2012.08.042 CrossRefGoogle Scholar
  2. Acar YB, Alshawabkeh AN (1993) Principles of electrokinetic remediation. Environ Sci Technol 27:2638–2647. doi: 10.1021/es00049a002 CrossRefGoogle Scholar
  3. Agostini F, Skoczylas F, Lafhaj Z (2007) About a possible valorisation in cementitious materials of polluted sediments after treatment. Cem Concr Compos 29:270–278. doi: 10.1016/j.cemconcomp.2006.11.012 CrossRefGoogle Scholar
  4. Ammami MT, Benamar A, Wang H et al (2014) Simultaneous electrokinetic removal of polycyclic aromatic hydrocarbons and metals from a sediment using mixed enhancing agents. Int J Environ Sci Technol 11:1801–1816. doi: 10.1007/s13762-013-0395-9 CrossRefGoogle Scholar
  5. Ammami MT, Portet-Koltalo F, Benamar A et al (2015) Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments. Chemosphere 125:1–8. doi: 10.1016/j.chemosphere.2014.12.087 CrossRefGoogle Scholar
  6. Amrate S, Akretche DE, Innocent C, Seta P (2005) Removal of Pb from a calcareous soil during EDTA-enhanced electrokinetic extraction. Sci Total Environ 349:56–66. doi: 10.1016/j.scitotenv.2005.01.018 CrossRefGoogle Scholar
  7. Azizur Rahman M, Mamunur Rahman M, Kadohashi K et al (2011) Effect of external iron and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake in rice (Oryza sativa L.). Chemosphere 84:439–445. doi: 10.1016/j.chemosphere.2011.03.046 CrossRefGoogle Scholar
  8. Baek K, Kim DH, Park SW et al (2009) Electrolyte conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing. J Hazard Mater 161:457–462. doi: 10.1016/j.jhazmat.2008.03.127 CrossRefGoogle Scholar
  9. Belzile N, Tessier A (1990) Interactions between arsenic and iron oxyhydroxides in lacustrine sediments. Geochim Cosmochim Acta 54:103–109. doi: 10.1016/0016-7037(90)90198-T CrossRefGoogle Scholar
  10. Benamar A, Baraud F (2011) Electrokinetic remediation of dredged sediments from Le Havre Harbour. Eur J Environ Civ Eng 15:215–228. doi: 10.1080/19648189.2011.9693319 CrossRefGoogle Scholar
  11. Cao M, Hu Y, Sun Q et al (2013) Enhanced desorption of PCB and trace metal elements (Pb and Cu) from contaminated soils by saponin and EDDS mixed solution. Environ Pollut 174:93–99. doi: 10.1016/j.envpol.2012.11.015 CrossRefGoogle Scholar
  12. Chang F, Lo S, Ko C (2007) Recovery of copper and chelating agents from sludge extracting solutions. Sep Purif Technol 53:49–56. doi: 10.1016/j.seppur.2006.06.011 CrossRefGoogle Scholar
  13. Chigbo C, Batty L (2013) Effect of EDTA and citric acid on phytoremediation of Cr- B[a]P-co-contaminated soil. Environ Sci Pollut Res 20:8955–8963. doi: 10.1007/s11356-013-1883-7 CrossRefGoogle Scholar
  14. Colacicco A, De Gioannis G, Muntoni A et al (2010) Enhanced electrokinetic treatment of marine sediments contaminated by heavy metals and PAHs. Chemosphere 81:46–56. doi: 10.1016/j.chemosphere.2010.07.004 CrossRefGoogle Scholar
  15. Egli T (2001) Biodegradation of metal-complexing aminopolycarboxylic acids. J Biosci Bioeng 92:89–97. doi: 10.1263/jbb.92.89 CrossRefGoogle Scholar
  16. Elliott HA, Brown GA (1989) Comparative evaluation of NTA and EDTA for extractive decontamination of Pb-polluted soils. Water Air Soil Pollut 45:361–369. doi: 10.1007/BF00283464 CrossRefGoogle Scholar
  17. Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003. doi: 10.1016/j.chemosphere.2007.01.062 CrossRefGoogle Scholar
  18. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418. doi: 10.1016/j.jenvman.2010.11.011 CrossRefGoogle Scholar
  19. Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549. doi: 10.1016/j.jhazmat.2009.07.118 CrossRefGoogle Scholar
  20. Gerth J, Brüemmer GW, Tiller KG (1993) Retention of Ni, Zn and Cd by Si-associated goethite. Z Pflanzenernähr Bodenkd 156:123–129CrossRefGoogle Scholar
  21. Giannis A, Gidarakos E (2005) Washing enhanced electrokinetic remediation for removal cadmium from real contaminated soil. J Hazard Mater 123:165–175. doi: 10.1016/j.jhazmat.2005.03.050 CrossRefGoogle Scholar
  22. Giannis A, Nikolaou A, Pentari D, Gidarakos E (2009) Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils. Environ Pollut 157:3379–3386. doi: 10.1016/j.envpol.2009.06.030 CrossRefGoogle Scholar
  23. Gidarakos E, Giannis A (2006) Chelate agents enhanced electrokinetic remediation for removal cadmium and zinc by conditioning catholyte pH. Water Air Soil Pollut 172:295–312. doi: 10.1007/s11270-006-9080-7 CrossRefGoogle Scholar
  24. Gu Y, Yeung AT, Li H (2009a) EDTA-enhanced electrokinetic extraction of cadmium from a natural clay of high buffer capacity. Proc. of Int. Symp. on Geoenvironmental Eng., ISGE 2009. pp 790–795Google Scholar
  25. Gu Y-Y, Yeung AT, Koenig A, Li H-J (2009b) Effects of chelating agents on zeta potential of cadmium-contaminated natural clay. Sep Sci Technol 44:2203–2222. doi: 10.1080/01496390902976731 CrossRefGoogle Scholar
  26. Iannelli R, Masi M, Ceccarini A et al (2015) Electrokinetic remediation of metal-polluted marine sediments: experimental investigation for plant design. Electrochim Acta. doi: 10.1016/j.electacta.2015.04.093 Google Scholar
  27. Kaya A, Yukselen Y (2005a) Zeta potential of clay minerals and quartz contaminated by heavy metals. Can Geotech J 42:1280–1289. doi: 10.1139/t05-048 CrossRefGoogle Scholar
  28. Kaya A, Yukselen Y (2005b) Zeta potential of soils with surfactants and its relevance to electrokinetic remediation. J Hazard Mater 120:119–126. doi: 10.1016/j.jhazmat.2004.12.023 CrossRefGoogle Scholar
  29. Kim C, Lee Y, Ong SK (2003) Factors affecting EDTA extraction of lead from lead-contaminated soils. Chemosphere 51:845–853. doi: 10.1016/S0045-6535(03)00155-3 CrossRefGoogle Scholar
  30. Kim SO, Kim WS, Kim KW (2005) Evaluation of electrokinetic remediation of arsenic-contaminated soils. Environ Geochem Health 27:443–453. doi: 10.1007/s10653-005-2673-z CrossRefGoogle Scholar
  31. Kim K-J, Kim D-H, Yoo J-C, Baek K (2011) Electrokinetic extraction of heavy metals from dredged marine sediment. Sep Purif Technol 79:164–169. doi: 10.1016/j.seppur.2011.02.010 CrossRefGoogle Scholar
  32. Kołodyńska D (2013) Application of a new generation of complexing agents in removal of heavy metal ions from different wastes. Environ Sci Pollut Res Int 20:5939–5949. doi: 10.1007/s11356-013-1576-2 CrossRefGoogle Scholar
  33. Lan J, Zhang S, Lin H et al (2013) Efficiency of biodegradable EDDS, NTA and APAM on enhancing the phytoextraction of cadmium by Siegesbeckia orientalis L. grown in Cd-contaminated soils. Chemosphere 91:1362–1367. doi: 10.1016/j.chemosphere.2013.01.116 CrossRefGoogle Scholar
  34. Lee H, Yang J (2000) A new method to control electrolytes pH by circulation system in electrokinetic soil remediation. J Hazard Mater 77:227–240. doi: 10.1016/S0304-3894(00)00251-X CrossRefGoogle Scholar
  35. Lozano JC, Blanco Rodríguez P, Tomé FV, Calvo CP (2011) Enhancing uranium solubilization in soils by citrate, EDTA, and EDDS chelating amendments. J Hazard Mater 198:224–231. doi: 10.1016/j.jhazmat.2011.10.026 CrossRefGoogle Scholar
  36. Luo C, Shen Z, Li X (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11. doi: 10.1016/j.chemosphere.2004.09.100 CrossRefGoogle Scholar
  37. Meers E, Ruttens A, Hopgood MJ et al (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011–1022. doi: 10.1016/j.chemosphere.2004.09.047 CrossRefGoogle Scholar
  38. Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 85:111–125. doi: 10.1016/S0304-3894(01)00224-2 CrossRefGoogle Scholar
  39. Ouhadi VR, Yong RN, Shariatmadari N et al (2010) Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method. J Hazard Mater 173:87–94. doi: 10.1016/j.jhazmat.2009.08.052 CrossRefGoogle Scholar
  40. Peng J-F, Song Y-H, Yuan P et al (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161:633–640. doi: 10.1016/j.jhazmat.2008.04.061 CrossRefGoogle Scholar
  41. Polettini A, Pomi R, Rolle E et al (2006) A kinetic study of chelant-assisted remediation of contaminated dredged sediment. J Hazard Mater 137:1458–1465. doi: 10.1016/j.jhazmat.2006.04.022 CrossRefGoogle Scholar
  42. Popov K, Glazkova I, Myagkov S et al (2007) Zeta-potential of concrete in presence of chelating agents. Colloids Surf A Physicochem Eng Asp 299:198–202. doi: 10.1016/j.colsurfa.2006.11.038 CrossRefGoogle Scholar
  43. Rahman MA, Hasegawa H, Ueda K et al (2008) Influence of EDTA and chemical species on arsenic accumulation in Spirodela polyrhiza L. (duckweed). Ecotoxicol Environ Saf 70:311–318. doi: 10.1016/j.ecoenv.2007.07.009 CrossRefGoogle Scholar
  44. Reddy KR, Danda S, Saichek RE (2004) Complicating factors of using ethylenediamine tetraacetic acid to enhance electrokinetic remediation of multiple heavy metals in clayey soils. J Environ Eng 130:1357–1366. doi: 10.1061/(ASCE)0733-9372(2004)130:11(1357) CrossRefGoogle Scholar
  45. Reddy KR, Urbanek A, Khodadoust AP (2006) Electroosmotic dewatering of dredged sediments: bench-scale investigation. J Environ Manage 78:200–208. doi: 10.1016/j.jenvman.2005.04.018 CrossRefGoogle Scholar
  46. Rozas F, Castellote M (2012) Electrokinetic remediation of dredged sediments polluted with heavy metals with different enhancing electrolytes. Electrochim Acta 86:102–109. doi: 10.1016/j.electacta.2012.03.068 CrossRefGoogle Scholar
  47. Sawada A, Mori K, Tanaka S et al (2004) Removal of Cr(VI) from contaminated soil by electrokinetic remediation. Waste Manag 24:483–490. doi: 10.1016/S0956-053X(03)00133-8 CrossRefGoogle Scholar
  48. Smedley P, Kinniburgh D (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568. doi: 10.1016/S0883-2927(02)00018-5 CrossRefGoogle Scholar
  49. Suzuki T, Moribe M, Okabe Y, Niinae M (2013) A mechanistic study of arsenate removal from artificially contaminated clay soils by electrokinetic remediation. J Hazard Mater 254-255C:310–317. doi: 10.1016/j.jhazmat.2013.04.013 CrossRefGoogle Scholar
  50. Suzuki T, Niinae M, Koga T et al (2014) EDDS-enhanced electrokinetic remediation of heavy metal-contaminated clay soils under neutral pH conditions. Colloids Surf A Physicochem Eng Asp 440:145–150. doi: 10.1016/j.colsurfa.2012.09.050 CrossRefGoogle Scholar
  51. Tandy S, Bossart K, Mueller R et al (2004) Extraction of heavy metals from soils using biodegradable chelating agents. Environ Sci Technol 38:937–944. doi: 10.1021/es0348750 CrossRefGoogle Scholar
  52. Thöming J, Kliem BK, Ottosen LM (2000) Electrochemically enhanced oxidation reactions in sandy soil polluted with mercury. Sci Total Environ 261:137–147. doi: 10.1016/S0048-9697(00)00636-7 CrossRefGoogle Scholar
  53. Tokunaga S, Hakuta T (2002) Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere 46:31–38CrossRefGoogle Scholar
  54. Treichel H, Goldstein A, George M et al (2011) Removal of trace metals using a biodegradable complexing agent. Photovoltaics Int 5:81–93Google Scholar
  55. Virkutyte J, Sillanpää M, Latostenmaa P (2002) Electrokinetic soil remediation—critical overview. Sci Total Environ 289:97–121. doi: 10.1016/S0048-9697(01)01027-0 CrossRefGoogle Scholar
  56. Wong JSH, Hicks RE, Probstein RF (1997) EDTA-enhanced electroremediation of metal-contaminated soils. J Hazard Mater 55:61–79. doi: 10.1016/S0304-3894(97)00008-3 CrossRefGoogle Scholar
  57. Yeung AT, Gu Y (2011) A review on techniques to enhance electrochemical remediation of contaminated soils. J Hazard Mater 195:11–29. doi: 10.1016/j.jhazmat.2011.08.047 CrossRefGoogle Scholar
  58. Yoo J-C, Lee C-D, Yang J-S, Baek K (2013) Extraction characteristics of heavy metals from marine sediments. Chem Eng J 228:688–699. doi: 10.1016/j.cej.2013.05.029 CrossRefGoogle Scholar
  59. Yoo J-C, Yang J-S, Jeon E-K, Baek K (2015) Enhanced-electrokinetic extraction of heavy metals from dredged harbor sediment. Environ Sci Pollut Res 22:9912–9921. doi: 10.1007/s11356-015-4155-x CrossRefGoogle Scholar
  60. Yuan C, Chiang TS (2008) Enhancement of electrokinetic remediation of arsenic spiked soil by chemical reagents. J Hazard Mater 152:309–315. doi: 10.1016/j.jhazmat.2007.06.099 CrossRefGoogle Scholar
  61. Zhang T, Zou H, Ji M et al (2014) Enhanced electrokinetic remediation of lead-contaminated soil by complexing agents and approaching anodes. Environ Sci Pollut Res 21:3126–3133. doi: 10.1007/s11356-013-2274-9 CrossRefGoogle Scholar
  62. Zhou DM, Deng CF, Cang L (2004) Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents. Chemosphere 56:265–273. doi: 10.1016/j.chemosphere.2004.02.033 CrossRefGoogle Scholar
  63. Zhou DM, Deng CF, Cang L, Alshawabkeh AN (2005) Electrokinetic remediation of a Cu-Zn contaminated red soil by controlling the voltage and conditioning catholyte pH. Chemosphere 61:519–527. doi: 10.1016/j.chemosphere.2005.02.055 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yue Song
    • 1
    • 2
  • Mohamed-Tahar Ammami
    • 1
  • Ahmed Benamar
    • 1
    Email author
  • Salim Mezazigh
    • 2
  • Huaqing Wang
    • 1
  1. 1.Laboratoire Ondes et Milieux Complexes, UMR CNRS 6294Université du HavreLe HavreFrance
  2. 2.Laboratoire Morphodynamique Continentale et CôtièreUMR CNRS 6143 Université de CaenCaenFrance

Personalised recommendations