Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 9, pp 8500–8507 | Cite as

NMR- and LC–MS/MS-based urine metabolomic investigation of the subacute effects of hexabromocyclododecane in mice

  • Dezhen Wang
  • Ping Zhang
  • Xinru Wang
  • Yao Wang
  • Zhiqiang Zhou
  • Wentao ZhuEmail author
Research Article

Abstract

In the present study, both untargeted and targeted metabolomics approaches were used to evaluate the subacute effects of hexabromocyclododecane (HBCD) on mice urine metabolome. Untargeted metabolomics based on 1H NMR showed that HBCD exposure disturbed mice metabolism in both dosed groups, especially in high dosed group. The low-dose HBCD led to a decrease in alanine, malonic acid, and trimethylamine (TMA). High-dose HBCD-treated mice developed high levels of citric acid and 2-ketoglutarate, together with decreased alanine, acetate, formate, TMA, 3-hydroxybutyrate, and malonic acid. Targeted metabolomics for metabolic profiling of 20 amino acids identified alanine, lysine, and phenylalanine as significantly disturbed metabolites. These results indicated that subchronic exposure to HBCD caused a disturbance of mice metabolism, especially in TCA cycle, lipid metabolism, gut microbial metabolism, and homeostasis of amino acids, and the application of untargeted and targeted metabolomics combined with conventional toxicology approaches to evaluate the subacute effects of pollutants will provide more comprehensive information and aid in predicting health risk of these pollutants.

Keywords

1H NMR HBCD Metabolomics Urine Amino acids 

Notes

Acknowledgments

We gratefully acknowledge financial support of National Natural Science Foundation of China (21207158, 21337005) and Chinese Universities Scientific Fund (2012RC026).

Compliance with ethical standards

Conflict of interest

The authors report no declarations of interest.

Supplementary material

11356_2015_5940_MOESM1_ESM.docx (96 kb)
ESM 1 (DOCX 95 kb)
11356_2015_5940_MOESM2_ESM.docx (16 kb)
ESM 2 (DOCX 16 kb)
11356_2015_5940_MOESM3_ESM.docx (14 kb)
ESM 3 (DOCX 14 kb)

References

  1. Allchin CR, Morris S (2003) Hexabromocyclododecane (HBCD) diastereoisomers and brominated diphenyl ether congener (BDE) residues in edible fish from the rivers Skerne and Tees, UK. Organohalogen Compd 61:41–44Google Scholar
  2. Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, Nicholson JK (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2:2692–2703CrossRefGoogle Scholar
  3. Cantón RF, Peijnenburg AA, Hoogenboom RL, Piersma AH, van der Ven L, van den Berg M, Heneweer M (2008) Subacute effects of hexabromocyclododecane (HBCD) on hepatic gene expression profiles in rats. Toxicol Appl Pharmacol 231:267–272CrossRefGoogle Scholar
  4. Committee POPR (2011): Hexabromocyclododecane, Draft Risk Management Evaluation. Prepared by the ad hoc working group on hexabromocyclododecane. Persistent Organic Pollutants Review Committee, April 2011, 24 pGoogle Scholar
  5. Covaci A, Gerecke AC, Law RJ, Voorspoels S, Kohler M, Heeb NV, Leslie H, Allchin CR, de Boer J (2006) Hexabromocyclododecanes (HBCDs) in the environment and humans: a review. Environ Sci Technol 40:3679–3688CrossRefGoogle Scholar
  6. Darnerud PO (2003) Toxic effects of brominated flame retardants in man and in wildlife. Environ Int 29:841–853CrossRefGoogle Scholar
  7. de Wit CA (2002) An overview of brominated flame retardants in the environment. Chemosphere 46:583–624CrossRefGoogle Scholar
  8. Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, Fearnside J, Tatoud R, Blanc V, Lindon JC, Mitchell SC, Holmes E, McCarthy MI, Scott J, Gauguier D, Nicholson JK (2006) Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A 103:12511–12516CrossRefGoogle Scholar
  9. Eriksson P, Fischer C, Wallin M, Jakobsson E, Fredriksson A (2006) Impaired behaviour, learning and memory, in adult mice neonatally exposed to hexabromocyclododecane (HBCDD). Environ Toxicol Pharmacol 21:317–322CrossRefGoogle Scholar
  10. Holmes E, Nicholls A, Lindon J, Ramos S, Spraul M, Neidig P, Connor S, Connelly J, Damment S, Haselden J (1998) Development of a model for classification of toxin-induced lesions using 1H NMR spectroscopy of urine combined with pattern recognition. NMR Biomed 11:235–244CrossRefGoogle Scholar
  11. Issaq HJ, Abbott E, Veenstra TD (2008) Utility of separation science in metabolomic studies. J Sep Sci 31:1936–1947CrossRefGoogle Scholar
  12. Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G (2006) Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588CrossRefGoogle Scholar
  13. Johnson-Restrepo B, Adams DH, Kannan K (2008) Tetrabromobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDs) in tissues of humans, dolphins, and sharks from the United States. Chemosphere 70:1935–1944CrossRefGoogle Scholar
  14. Kaspar H, Dettmer K, Chan Q, Daniels S, Nimkar S, Daviglus ML, Stamler J, Elliott P, Oefner PJ (2009) Urinary amino acid analysis: a comparison of iTRAQ®–LC–MS/MS, GC–MS, and amino acid analyzer. J Chromatogr B 877:1838–1846CrossRefGoogle Scholar
  15. Koike E, Yanagisawa R, Takigami H, Takano H (2013) Brominated flame retardants stimulate mouse immune cells in vitro. J Appl Toxicol 33:1451–1459CrossRefGoogle Scholar
  16. Landfried K, Zhu W, Waldhier MC, Schulz U, Ammer J, Holler B, Wolff D, Edinger M, Peter K, Kreutz M, Andreesen R, Oefner PJ, Holler E (2011) Tryptophan catabolism is associated with acute GVHD after human allogeneic stem cell transplantation and indicates activation of indoleamine 2,3-dioxygenase. Blood 118:6971–6974CrossRefGoogle Scholar
  17. Lei R, Wu C, Yang B, Ma H, Shi C, Wang Q, Wang Q, Yuan Y, Liao M (2008) Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity. Toxicol Appl Pharmacol 232:292–301CrossRefGoogle Scholar
  18. Li P, Yin Y-L, Li D, Woo Kim S, Wu G (2007) Amino acids and immune function. Br J Nutr 98:237–252CrossRefGoogle Scholar
  19. Lilienthal H, van der Ven L, Piersma AH, Vos JG (2009) Effects of the brominated flame retardant hexabromocyclododecane (HBCD) on dopamine-dependent behavior and brainstem auditory evoked potentials in a one-generation reproduction study in Wistar rats. Toxicol Lett 185:63–72CrossRefGoogle Scholar
  20. McCombie G, Browning LM, Titman CM, Song M, Shockcor J, Jebb SA, Griffin JL (2009) ω-3 oil intake during weight loss in obese women results in remodelling of plasma triglyceride and fatty acids. Metabolomics 5:363–374CrossRefGoogle Scholar
  21. Morris S, Allchin CR, Zegers BN, Haftka JJ, Boon JP, Belpaire C, Leonards PE, Van Leeuwen SP, de Boer J (2004) Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea estuaries and aquatic food webs. Environ Sci Technol 38:5497–5504CrossRefGoogle Scholar
  22. Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189CrossRefGoogle Scholar
  23. Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122CrossRefGoogle Scholar
  24. Saegusa Y, Fujimoto H, Woo G-H, Inoue K, Takahashi M, Mitsumori K, Hirose M, Nishikawa A, Shibutani M (2009) Developmental toxicity of brominated flame retardants, tetrabromobisphenol A and 1, 2, 5, 6, 9, 10-hexabromocyclododecane, in rat offspring after maternal exposure from mid-gestation through lactation. Reprod Toxicol 28:456–467CrossRefGoogle Scholar
  25. Schriks M, Roessig JM, Murk AJ, Furlow JD (2007) Thyroid hormone receptor isoform selectivity of thyroid hormone disrupting compounds quantified with an in vitro reporter gene assay. Environ Toxicol Pharmacol 23:302–307CrossRefGoogle Scholar
  26. Shi Z-X, Wu Y-N, Li J-G, Zhao Y-F, Feng J-F (2009) Dietary exposure assessment of Chinese adults and nursing infants to tetrabromobisphenol-A and hexabromocyclododecanes: occurrence measurements in foods and human milk. Environ Sci Technol 43:4314–4319CrossRefGoogle Scholar
  27. Sun Y-J, Wang H-P, Liang Y-J, Yang L, Li W, Wu Y-J (2012) An NMR-based metabonomic investigation of the subacute effects of melamine in rats. J Proteome Res 11:2544–2550CrossRefGoogle Scholar
  28. Szabo DT, Pathmasiri, W., Diliberto, J.J., Sumner, S., Birnbaum, L.S. (2011): Metabolomic analysis of serum after treatment with the emerging pop flame retardant hexabromocyclododecane (HBCD): Commercial mixture, alpha and gamma stereoisomers elicit differential effects in infantile mice. Toxicologist 20 (Suppl. 2, Abstract No. 2248):482Google Scholar
  29. Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6:469–479CrossRefGoogle Scholar
  30. van der Ven LT, Verhoef A, Van De Kuil T, Slob W, Leonards PE, Visser TJ, Hamers T, Herlin M, Håkansson H, Olausson H (2006) A 28-day oral dose toxicity study enhanced to detect endocrine effects of hexabromocyclododecane in Wistar rats. Toxicol Sci 94:281–292CrossRefGoogle Scholar
  31. van der Ven L, van de Kuil T, Leonards PE, Slob W, Lilienthal H, Litens S, Herlin M, Håkansson H, Cantón RF, van den Berg M (2009) Endocrine effects of hexabromocyclododecane (HBCD) in a one-generation reproduction study in Wistar rats. Toxicol Lett 185:51–62CrossRefGoogle Scholar
  32. Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17CrossRefGoogle Scholar
  33. Wu G, Bazer F, Datta S, Johnson G, Li P, Satterfield M, Spencer T (2008) Proline metabolism in the conceptus: implications for fetal growth and development. Amino Acids 35:691–702CrossRefGoogle Scholar
  34. Zheng S, Zhang S, Yu M, Tang J, Lu X, Wang F, Yang J, Li F (2011) An 1H NMR and UPLC–MS-based plasma metabonomic study to investigate the biochemical changes in chronic unpredictable mild stress model of depression. Metabolomics 7:413–423CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Dezhen Wang
    • 1
  • Ping Zhang
    • 1
  • Xinru Wang
    • 1
  • Yao Wang
    • 1
  • Zhiqiang Zhou
    • 1
  • Wentao Zhu
    • 1
    Email author
  1. 1.Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied ChemistryChina Agricultural UniversityBeijingChina

Personalised recommendations