Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 7, pp 6883–6894 | Cite as

Water level fluctuations in a tropical reservoir: the impact of sediment drying, aquatic macrophyte dieback, and oxygen availability on phosphorus mobilization

  • Jonas KeitelEmail author
  • Dominik Zak
  • Michael Hupfer
Research Article

Abstract

Reservoirs in semi-arid areas are subject to water level fluctuations (WLF) that alter biogeochemical processes in the sediment. We hypothesized that wet–dry cycles may cause internal eutrophication in such systems when they affect densely vegetated shallow areas. To assess the impact of WLF on phosphorus (P) mobilization and benthic P cycling of iron-rich sediments, we tested the effects of (i) sediment drying and rewetting, (ii) the impact of organic matter availability in the form of dried Brazilian Waterweed (Egeria densa), and (iii) alternating redox conditions in the surface water. In principle, drying led to increased P release after rewetting both in plant-free and in plant-amended sediments. Highest P mobilization was recorded in plant amendments under oxygen-free conditions. After re-establishment of aerobic conditions, P concentrations in surface water decreased substantially owing to P retention by sediments. In desiccated and re-inundated sediments, P retention decreased by up to 30 % compared to constantly inundated sediments. We showed that WLF may trigger biochemical interactions conducive to anaerobic P release. Thereby, E. densa showed high P release and even P uptake that was redox-controlled and superimposed sedimentary P cycling. Macrophytes play an important role in the uptake of P from the water but may be also a significant source of P in wet–dry cycles. We estimated a potential for the abrupt release of soluble reactive phosphorus (SRP) by E. densa of 0.09–0.13 g SRP per m2 after each wet–dry cycle. Released SRP may exceed critical P limits for eutrophication, provoking usage restrictions. Our results have implications for management of reservoirs in semi-arid regions affected by WLF.

Keywords

Water level change Egeria densa Nutrient cycling Eutrophication Water management Semi-arid Itaparica reservoir 

Notes

Acknowledgments

The authors would like to thank S. Calado for her support during several sampling campaigns in Brazil. We are grateful to F. Selge, D. Lima, and M. Rodriguez for their help with field work. Our colleagues H.-J. Exner, C. Herzog, A. Lüder, S. Jordan, and M. Uber helped with technical support. We also thank H. Nottebrock, G. Gunkel, and two anonymous reviewers for critical comments and for improving the manuscript. This study was funded by the Federal Ministry of Education and Research (BMBF) within the project “INNOVATE” (01LL0904C).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Aldous A, McCormick P, Ferguson C, Graham S, Craft C (2005) Hydrologic regime controls soil phosphorus fluxes in restoration and undisturbed wetlands. Restor Ecol 13:341–347. doi: 10.1111/j.1526-100X.2005.00043.x CrossRefGoogle Scholar
  2. Asaeda T, Trung VK, Manatunge J (2000) Modeling the effects of macrophyte growth and decomposition on the nutrient budget in shallow lakes. Aquat Bot 68:217–237. doi: 10.1016/S0304-3770(00)00123-6
  3. Baldwin DS (1996) Effects of exposure to air and subsequent drying on the phosphate sorption characteristics of sediments from a eutrophic reservoir. Limnol Oceanogr 41:1725–1732. doi: 10.4319/lo.1996.41.8.1725 CrossRefGoogle Scholar
  4. Baldwin DS, Mitchell AM (2000) The effects of drying and reflooding on the sediment and soil nutrient dynamics of lowland river–floodplain systems: a synthesis. Regul River 16:457–467. doi: 10.1002/1099-1646(200009/10)16:5<457::AID-RRR597>3.0.CO;2-B CrossRefGoogle Scholar
  5. Bates D, Mächler M, Bolker B, Walker S (2014) lme4: Linear mixed-effects models using Eigen and S4. R Package Version 1.1-7. http://CRAN.R-project.org/package=lme4
  6. Batzer DP, Sharitz RR (2006) Ecology of freshwater and estuarine wetlands. University of California Press, London. doi: 10.2193/2007-148 Google Scholar
  7. Bergkamp G, McCartney M, Dugan P, McNeely J, Acreman M (2000) Dams, ecosystem functions and environmental restoration. Prepared for the World Commission on Dams. Thematic review, Environmental Issue II., p 1Google Scholar
  8. Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–329. doi: 10.1016/0038-0717(82)90001-3 CrossRefGoogle Scholar
  9. Casati P, Lara MV, Andreo CS (2000) Induction of a C-4 like mechanism of CO2 fixation in Egeria densa, a submersed aquatic species. Plant Physiol 123:1611–1622Google Scholar
  10. Cheesman AW, Turner BL, Inglett PW, Reddy KR (2010) Phosphorus transformations during decomposition of wetland macrophytes. Sci Total Environ 44:9265–9271. doi: 10.1021/es102460h
  11. Cooke DG (2005) Restoration and management of lakes and reservoirs, Third Edition. CRC Press. DOI:1566706254Google Scholar
  12. Coops H, Beklioglu M, Crisman TL (2003) The role of water-level fluctuations in shallow lake ecosystems—workshop conclusions. Hydrobiologia 506–50:23–27. doi: 10.1023/B:HYDR.0000008595.14393.77 CrossRefGoogle Scholar
  13. R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.Google Scholar
  14. Crawley MJ (2007) The R book. John Wiley and Sons, Ltd.Google Scholar
  15. De Groot C-J, Van Wijck C (1993) The impact of desiccation of a freshwater marsh (Garcines Nord, Camargue, France) on sediment-water-vegetation interactions. Hydrobiologia 252:83–94. doi: 10.1007/BF00000130 CrossRefGoogle Scholar
  16. De Vicente I, Andersen FØ, Hansen HCB, Cruz-Pizarro L, Jensen HS (2010) Water level fluctuations may decrease phosphate adsorption capacity of the sediment in oligotrophic high mountain lakes. Hydrobiologia 651:253–264. doi: 10.1007/s10750-010-0304-x CrossRefGoogle Scholar
  17. De Winton MD, Champion PD, Clayton JS, Wells RDS (2009) Spread and status of seven submerged pest plants in New Zealand lakes. N Z J Mar Fresh 43:547–561. doi: 10.1080/00288330909510021 CrossRefGoogle Scholar
  18. Dieter D, Herzog H, Hupfer M (2015) Effects of drying on phosphorus uptake of re-flooded lake sediments. Environ Sci Pollut Res 22:17065–17081. doi: 10.1007/s11356-015-4904-x CrossRefGoogle Scholar
  19. Gilbert JD, Guerrero F, de Vicente I (2014) Sediment desiccation as a driver of phosphate availability in the water column of Mediterranean wetlands. Sci Total Environ 466–467:965–975. doi: 10.1016/j.scitotenv.2013.07.123 CrossRefGoogle Scholar
  20. Gordon H, Haygarth PM, Bardgett RD (2008) Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biol Biochem 40:302–311. doi: 10.1016/j.soilbio.2007.08.008 CrossRefGoogle Scholar
  21. Granéli W, Solander D (1988) Influence of aquatic macrophytes on phosphorus cycling in lakes. Hydrobiologia 170:245–266. doi: 10.1007/BF00024908 CrossRefGoogle Scholar
  22. Gunkel G, Sobral M (2013) Re-oligotrophication as a challenge for tropical reservoir management with reference to Itaparica Reservoir, São Francisco, Brazil. Water Sci Technol 67:708–714. doi: 10.2166/wst.2012.583 CrossRefGoogle Scholar
  23. Gunkel G, Lima D, Selge F, Sobral M, Calado S (2015) Aquatic ecosystem services of reservoirs in semiarid areas: sustainability and reservoir management. WIT Trans Ecol Environ 197:187–200Google Scholar
  24. Hilt S, Gross EM, Hupfer M, Morscheid H, Mählmann J, Melzer A, Poltz J, Sandrock S, Scharf E-M, Schneider S, van de Weyer K (2006) Restoration of submerged vegetation in shallow eutrophic lakes—a guideline and state of the art in Germany. Limnologica - Ecology and Management of Inland Waters 36:155–171. doi: 10.1016/j.limno.2006.06.001 CrossRefGoogle Scholar
  25. Hupfer M, Gächter R, Giovanoli R (1995) Transformation of phosphorus species in settling seston and during early sediment diagenesis. Aquat Sci 57:305–324. doi: 10.1007/BF00878395 CrossRefGoogle Scholar
  26. Hupfer M, Gloess S, Grossart H-P (2007) Polyphosphate-accumulating microorganisms in aquatic sediments. Aquat Microb Ecol 47:299–311. doi: 10.3354/ame047299 CrossRefGoogle Scholar
  27. Jensen HS, Kristensen P, Jeppesen E, Skytthe A (1992) Iron:phosphorus ratio in surface sediment as an indicator phosphate release from aerobic sediments in shallow lakes. Hydrobiologia 235(236):731–743. doi: 10.1007/BF00026261 CrossRefGoogle Scholar
  28. Kerr JG, Burford M, Olley J, Udy J (2010) The effects of drying on phosphorus sorption and speciation in subtropical river sediments. Mar Freshwater Res 61:928–935. doi: 10.1071/MF09124 CrossRefGoogle Scholar
  29. Kleeberg A (2013) Impact of aquatic macrophyte decomposition on sedimentary nutrient and metal mobilization in the initial stages of ecosystem development. Aquat Bot 105:41–49. doi: 10.1016/j.aquabot.2012.12.003 CrossRefGoogle Scholar
  30. Kolding J, van Zwieten PAM (2012) Relative lake level fluctuations and their influence on productivity and resilience in tropical lakes and reservoirs. Fish Res 115–116:99–109. doi: 10.1016/j.fishres.2011.11.008 CrossRefGoogle Scholar
  31. Krolová M, Čížková H, Hejzlar J, Poláková S (2013) Response of littoral macrophytes to water level fluctuations in a storage reservoir. Knowl Manag Aquat Ecosys 408:1–21. doi: 10.1051/kmae/2013042 Google Scholar
  32. Laskov C, Herzog C, Lewandowski J, Hupfer M (2007) Miniaturized photometrical methods for the rapid analysis of phosphate, ammonium, ferrous iron, and sulfate in pore water of freshwater sediments. Limnol Oceanogr-Meth 5:63–71. doi: 10.4319/lom.2007.5.63 CrossRefGoogle Scholar
  33. Marion L, Paillisson J-M (2003) A mass balance assessment of the contribution of floating-leaved macrophytes in nutrient stocks in an eutrophic macrophyte dominated lake. Aquat Bot 75:249–260. doi: 10.1016/S0304-3770(02)00177-8 CrossRefGoogle Scholar
  34. Mitchell A, Baldwin DS (1998) Effects of desiccation/oxidation on the potential for bacterially mediated P release from sediments. Limnol Oceanogr 43:481–487. doi: 10.4319/lo.1998.43.3.0481 CrossRefGoogle Scholar
  35. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. doi: 10.1016/S0003-2670(00)88444-5 CrossRefGoogle Scholar
  36. Nilsson C (2009) Reservoirs. In: Likens GE (ed) Encyclopedia of inland waters. Elsevier, Academic Press, Oxford, pp 625–633CrossRefGoogle Scholar
  37. Precht E, Huettel M (2004) Rapid wave-driven advective pore water exchange in a permeable coastal sediment. J Sea Res 51:93–107. doi: 10.1016/j.seares.2003.07.003 CrossRefGoogle Scholar
  38. Psenner R, Pucsko R, Sager M (1984) Die Fraktionierung organischer und anorganischer Phosphorverbindungen von Sedimenten – Versuch einer Definition ökologisch wichtiger Fraktionen. Archiv für Hydrobiologie, Supplement 70:111–155Google Scholar
  39. Qiu S, McComb A (1994) Effects of oxygen concentration on phosphorus release from reflooded air-dried wetland sediments. Mar Freshwater Res 45:1319–1328. doi: 10.1071/MF9941319 CrossRefGoogle Scholar
  40. Qiu S, McComb A (1995) Planktonic and microbial contributions to phosphorus release from fresh and air-dried sediments. Mar Freshwater Res 46:1039–1045. doi: 10.1071/MF9951039 CrossRefGoogle Scholar
  41. Qiu S, McComb A (2002) Interrelations between iron extractability and phosphate sorption in reflooded air-dried sediments. Hydrobiologia 472:39–44CrossRefGoogle Scholar
  42. Rangel LM, Silva LHS, Rosa P, Roland F, Huszar VLM (2012) Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs. Hydrobiologia 693:13–28. doi: 10.1007/s10750-012-1083-3 CrossRefGoogle Scholar
  43. Ribaudo C, Bertrin V, Dutartre A (2014) Dissolved gas and nutrient dynamics within an Egeria densa Planch. bed. Acta Bot Gallica 161:233–241. doi: 10.1080/12538078.2014.932703 CrossRefGoogle Scholar
  44. Schönbrunner IM, Preiner S, Hein T (2012) Impact of drying and reflooding of sediment on phosphorus dynamics of river-floodplain systems. Sci Total Environ 432:329–337. doi: 10.1016/j.scitotenv.2012.06.025 CrossRefGoogle Scholar
  45. Selge F, Matta E, Hinkelmann R, Gunkel G (2015) Nutrient load concept- reservoir vs. bay impacts: a case study from a semi-arid watershed. Conference paper at 17th IWA International Conference on Diffuse Pollution and Eutrophication, Berlin, GermanyGoogle Scholar
  46. Shilla D, Asaeda T, Fujino T, Sanderson B (2006) Decomposition of dominant submerged macrophytes: implications for nutrient release in Myall Lake, NSW, Australia. Wet Ecol Manag 14:427–433. doi: 10.1007/s11273-006-6294-9 CrossRefGoogle Scholar
  47. Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environ Sci Pollut Res 10:126–139. doi: 10.1065/espr2002.12.142 CrossRefGoogle Scholar
  48. Smith AS, Jacinthe P-A (2013) A mesocosm study of the effects of wet–dry cycles on nutrient release from constructed wetlands in agricultural landscapes. Environ Sci 16:106–115. doi: 10.1039/C3EM00465A Google Scholar
  49. Søndergaard M, Jensen JP, Jeppesen E (2003) Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506:135–145. doi: 10.1023/B:HYDR.0000008611.12704.dd CrossRefGoogle Scholar
  50. Tang X, Wu M, Li Q, Lin L, Zhao W (2014) Impacts of water level regulation on sediment physic-chemical properties and phosphorus adsorption–desorption behaviors. Ecol Eng 70:450–458. doi: 10.1016/j.ecoleng.2014.06.022 CrossRefGoogle Scholar
  51. Townsend SA (1999) The seasonal pattern of dissolved oxygen, and hypolimnetic deoxygenation, in two tropical Australian reservoirs. Lakes Reserv Res Manage 4:41–53. doi: 10.1046/j.1440-1770.1999.00077.x CrossRefGoogle Scholar
  52. Uhlmann D, Paul L, Hupfer M, Fischer R (2011) Lakes and reservoirs. In: Wilderer P (ed) Treatise on water sciences, vol 2., pp 157–213CrossRefGoogle Scholar
  53. Wagener T, Sivapalan M, Troch PA, McGlynn BL, Harman CJ, Gupta HV, Kumar P, Rao PSC, Basu NB, Wilson JS (2010) The future of hydrology: an evolving science for a changing world. Water Resour Res 46:W05301. doi: 10.1029/2009WR008906 Google Scholar
  54. Wantzen KM, Rothhaupt K-O, Mörtl M, Cantonati M, Tóth LG, Fischer P (2008) Ecological effects of water-level fluctuations in lakes: an urgent issue. Hydrobiologia 613:1–4. doi: 10.1007/978-1-4020-9192-6 CrossRefGoogle Scholar
  55. Watts CJ (2000a) Seasonal phosphorus release from exposed, re-inundated littoral sediments of two Australian reservoirs. Hydrobiologia 431:27–39. doi: 10.1023/A:1004098120517 CrossRefGoogle Scholar
  56. Watts CJ (2000b) The effect of organic matter on sedimentary phosphorus release in an Australian reservoir. Hydrobiologia 431:13–25. doi: 10.1023/A:1004046103679 CrossRefGoogle Scholar
  57. Wells RDS, Clayton JS (1991) Submerged vegetation and spread of Egeria densa Planchon in Lake Rotorua, central North Island, New Zealand. N Z J Mar Fresh 25:63–70. doi: 10.1080/00288330.1991.9516454 CrossRefGoogle Scholar
  58. Wilson J, Baldwin D (2008) Exploring the “Birch effect” in reservoir sediments: influence of inundation history on aerobic nutrient release. Chem Ecol 24:379–386. doi: 10.1080/02757540802497582 CrossRefGoogle Scholar
  59. Zak D, Gelbrecht J (2007) The mobilisation of phosphorus, organic carbon and ammonium in the initial stage of fen rewetting (a case study from NE Germany). Biogeochemistry 85:141–151. doi: 10.1007/s10533-007-9122-2 CrossRefGoogle Scholar
  60. Zak D, Gelbrecht J, Zerbe S, Shatwell T, Barth M, Cabezas A, Steffenhagen P (2014) How helophytes influence the phosphorus cycle in degraded inundated peat soils—implications for fen restoration. Ecol Eng, Wetland Restoration– Challenges and Opportunities 66:82–90. doi: 10.1016/j.ecoleng.2013.10.003 Google Scholar
  61. Zohary T, Ostrovsky I (2011) Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Waters 1:47–59. doi: 10.5268/iw-1.1.406 CrossRefGoogle Scholar
  62. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York. doi: 10.1007/978-0-387-87458-6 CrossRefGoogle Scholar
  63. Zwirnmann E, Krüger A, Gelbrecht J (1999) Analytik im Zentralen Chemielabor. Jahresbericht des IGB (Leibniz-Institut für Gewässerökologie und Binnenfischerei) 9:3–24Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Leibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany

Personalised recommendations