Environmental Science and Pollution Research

, Volume 23, Issue 7, pp 6690–6699 | Cite as

Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani

  • Inès MnifEmail author
  • Ariadna Grau-Campistany
  • Jonathan Coronel-León
  • Inès Hammami
  • Mohamed Ali Triki
  • Angeles Manresa
  • Dhouha Ghribi
Research Article


This study reports the potential of a soil bacterium, Bacillus subtilis strain SPB1, to produce lipopeptide biosurfactants. Firstly, the crude lipopeptide mixture was tested for its inhibitory activity against phytopathogenic fungi. A minimal inhibitory concentration (MIC), an inhibitory concentration at 50 % (IC50 %), and an inhibitory concentration at 90 % (IC90 %) values were determined to be 0.04, 0.012, and 0.02 mg/ml, respectively, for Rhizoctonia bataticola with a fungistatic mode of action. For Rhizoctonia solani, a MIC, an IC50 %, and IC90 % values were determined to be 4, 0.25, and 3.3 mg/ml, respectively, with a fungicidal mode of action. For both of the fungi, a loss of sclerotial integrity, granulation and fragmentation of hyphal mycelia, followed by hyphal shriveling and cell lysis were observed with the treatment with SPB1 biosurfactant fraction. After extraction, separation, and purification, different lipopeptide compounds were identified in the culture filtrate of strain SPB1. Mass spectroscopic analysis confirmed the presence of different lipopeptide compounds consisting of surfactin isoforms with molecular weights of 1007, 1021, and 1035 Da; iturin isoforms with molecular weights of 1028, 1042, and 1056 Da; and fengycin isoforms with molecular weights of 1432 and 1446 Da. Two new clusters of lipopeptide isoforms with molecular weights of 1410 and 1424 Da and 973 and 987 Da, respectively, were also detected. This study reported the ability of a B. subtilis strain to co-produce lipopeptide isoforms with potential use as antifungal compounds.


Lipopeptide Mass spectroscopy Surfactin, iturin, and fengycin Rhizoctonia sp. Antifungal 



This work has been supported by grants from “Tunisian Ministry of Higher Education, Scientific Research and Technology” and the “Tunisian Ministry of Agriculture.”

Compliance with ethical standards

Conflict of interest

No conflict of interest is declared.


  1. Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NA-H (2008) Characterization of surfactin produced by Bacillus subtilis isolate BS5. Appl Biochem Biotechnol 150:289–303CrossRefGoogle Scholar
  2. Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptide-lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Communicat 31:488–494CrossRefGoogle Scholar
  3. Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085Google Scholar
  4. Bacon CW, Hinton DM, Mitchell TR, Snook ME, Olubajo B (2012) Characterization of endophytic strains of Bacillus mojavensis and their production of surfactin isomers. Biol Control 62:1–9CrossRefGoogle Scholar
  5. Beg AZ, Ahmad I (2002) In vitro fungitoxicity of the essential oil of Syzygium aromaticum. World J Mirobiol Biotechnol 18:313–315Google Scholar
  6. Ben Ayed H, Hmidet N, Béchet M, Chollet M, Chataigné G, Leclère V, Jacques P, Nasri M (2014) Identification and biochemical characteristics of lipopeptides from Bacillus mojavensis A21. Process Biochem. doi: 10.1016/j.procbio.2014.07.001
  7. Ben Slimene I, Tabbene O, Djebali N, Cosette P, Schmitter JM, Jouenne T, Urdaci M-C, Limam F (2012) Putative use of a Bacillus subtilis L194 strain for biocontrol of Phoma medicaginis in Medicago truncatula seedlings. Res Microbiol 163:388–397CrossRefGoogle Scholar
  8. Buensanteai N, Yuen GY, Prathuangwong S (2008) The biocontrol bacterium Bacillus amyloliquefaciens KPS46 produces auxin, surfactin and extracellular proteins for enhanced growth of soybean plant. Thai J Agricult Sci 41(3–4):101–116Google Scholar
  9. Canova SP, Petta T, Reyes LF, Zucchi TD, Moraes LAB, Melo IS (2010) Characterization of lipopeptides from Paenibacillus sp. (IIRAC30) suppressing Rhizoctonia solani. World J Microbiol Biotechnol 26:2241–2247CrossRefGoogle Scholar
  10. Cao Y, Xu Z, Ling N, Yuan Y, Yang X, Chen L, Shen B, Shen QR (2012) Isolation and identification of lipopeptides produced by B. subtilis SQR 9 for suppressing Fusarium wilt of cucumber. Scientia Horticult 135:32–39CrossRefGoogle Scholar
  11. Chen H, Wang L, Su CX, Gong GH, Wang P, Yu ZL (2008) Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Lett Appl Microbiol 47:180–186CrossRefGoogle Scholar
  12. Coronel-León J, de Grau G, Grau-Campistany A, Farfan M, Rabanal F, Manresa A, Marqués AM (2015) Biosurfactant production by AL 1.1, a Bacillus licheniformis strain isolated from Antarctica: production, chemical characterization and properties. Ann Microbiol. doi: 10.1007/s13213-015-1045-x
  13. Dufour S, Deleu M, Nott K, Wathelet B, Thonart P, Paquot M (2005) Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. Biochim Biophys Acta 1726:87–95CrossRefGoogle Scholar
  14. Erper I, Turkkan M, Karaca GH, Kılıc G (2011) Evaluation of in vitro antifungal activity of potassium bicarbonate on Rhizoctonia solani AG 4 HG-I, Sclerotinia sclerotiorum and Trichoderma sp. Afr J Biotechnol 10(43):8605–8612Google Scholar
  15. Falardeau J, Wise C, Novitsky L, Avis TJ (2013) Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J Chem Ecol 39:869–878CrossRefGoogle Scholar
  16. Fatima Z, Saleemi M, Zia M, Sultan T, Aslam M, Rehman R-U, Chaudhary MF (2009) Antifungal activity of plant growth-promoting rhizobacteria isolates against Rhizoctonia solani in wheat. Afr J Biotechnol 8(2):219–225Google Scholar
  17. Fracchia L, Cavallo M, Martinotti MG, Banat IM (2012) Biosurfactants and bioemulsifiers biomedical and related applications—present status and future potentials, Biomedical Science, Engineering and Technology, Prof. Dhanjoo N. Ghista (Ed.), ISBN: 978-953-307-471-9, InTechGoogle Scholar
  18. Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE (2006) Climate change effects on plant disease: genomes to ecosystems. Annual Rev Phytopathol 44:489–509CrossRefGoogle Scholar
  19. Ghribi D, Abdelkefi L, Boukadi H, Elleuch M, Ellouze-Chaabouni S, Tounsi S (2011) The impact of the Bacillus subtilis SPB1 biosurfactant on the midgut histology of Spodoptera littoralis (Lepidoptera: Noctuidae) and determination of its putative receptor. J Inver Pathol 109(2):183–186CrossRefGoogle Scholar
  20. Ghribi D, Abdelkefi-Mesrati L, Mnif I, Kammoun R, Ayadi I, Saadaoui I, Maktouf S, Chaabouni-Ellouze S (2012a) Investigation of antimicrobial activity and statistical optimization of Bacillus subtilis SPB1 biosurfactant production in solid-state fermentation. J Biomed Biotechnol. doi: 10.1155/2012/373682 Google Scholar
  21. Ghribi D, Elleuch M, Abdelkefi LM, Ellouze-Chaabouni S (2012b) Evaluation of larvicidal potency of Bacillus subtilis SPB1 biosurfactant against Ephestia kuehniella (Lepidoptera: Pyralidae) larvae and influence of abiotic factors on its insecticidal activity. J Stored Prod Res 48:68–72CrossRefGoogle Scholar
  22. Ghribi D, Elleuch M, Abdelkefi-Mesrati L, Boukedi H, Ellouze Chaabouni S (2012c) Histopathological effects of Bacillus subtilis SPB1 biosurfactant in the midgut of Ephestia kuehniella (Lepidoptera: Pyralidae) and improvement of its insecticidal efficiency. J Plant Dis Protect 119(1):24–29Google Scholar
  23. Gong Q, Zhang C, Lu F, Zhao H, Bie X, Lu Z (2014) Identification of bacillomycin D from Bacillus subtilis fmbJ and its inhibition effects against Aspergillus flavus. Food Control 36:8–14CrossRefGoogle Scholar
  24. Guo Q, Dong W, Li S, Lu X, Wang P, Zhang X, Wang Y, Ma P (2013) Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol Res. doi: 10.1016/j.micres.2013.12.001
  25. Horowitz S, Griffin WM (1991) Structural analysis of Bacillus licheniformis 86 surfactant. J Indust Microbiol Biotechnol 7:45–52CrossRefGoogle Scholar
  26. Hu LB, Shi ZQ, Zhang T, Yang ZM (2007) Fengycin antibiotics isolated from B-FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC 38932. FEMS Microbiol Lett 272:91–98CrossRefGoogle Scholar
  27. Huang C-C, Ano T, Shoda M (1993) Nucleotide sequence and characterization of the gene, lpa-14, responsible for biosynthesis of the lipopeptide antibiotics iturin A and surfactin from Bacillus subtilis RB14. J ferment Bioeng 76:445–450CrossRefGoogle Scholar
  28. Jin H, Zhang X, Li K, Niu Y, Guo M, Hu C, Wan X, Gong Y, Huang F (2014) Direct bio-utilization of untreated rapeseed meal for effective iturin A production by Bacillus subtilis in submerged fermentation. PLOS ONE. doi: 10.1371/journal.pone.0111171 Google Scholar
  29. Kowall M, Vater J, Kluge B, Stein T, Franke P, Ziessow D (1998) Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J Colloid Interf Sci 204:1–8CrossRefGoogle Scholar
  30. Kundu A, Saha S, Walia S (2013) Antioxidant and antifungal properties of the essential oil of Anisomeles indica from India. J Med Plants Res 7(24):1774–1779Google Scholar
  31. Kurzawinska H, Mazur S (2008) Biological control of potato against Rhizoctonia solani (Kühn). Scientific works of the Lithuanian Institute of Horticulture and Lithuanian University of Agriculture 27 (2)Google Scholar
  32. Leclère V, Béchet M, Adam A, Guez J-S, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584CrossRefGoogle Scholar
  33. Li X-Y, Yang J-J, Mao Z-C, Ho H-H, Wu Y-X, He Y-Q (2014) Enhancement of biocontrol activities and cyclic lipopeptides production by chemical mutagenesis of Bacillus subtilis XF-1, a biocontrol agent of Plasmodiophora brassicae and Fusarium solani. Ind J Microbiol. doi: 10.1007/s12088-014-0471-y Google Scholar
  34. Li Y, Yang S, Mu B (2010) The surfactin and lichenysin isoforms produced by Bacillus licheniformis HSN 221. Analyt Lett 43:929–940CrossRefGoogle Scholar
  35. Li Y-M, Haddad NIA, Yang S-Z, Mu B-Z (2008) Variants of lipopeptides produced by Bacillus licheniformis HSN221 in different medium components evaluated by a rapid method ESI-MS. Springer Science+Business Media 14:229–235Google Scholar
  36. Lima TM, Procópio LC, Brandão FD, Leão BA, Tótola MR, Borges AC (2011) Evaluation of bacterial surfactant toxicity towards petroleum degrading microorganisms. Bioresour Technol 102:2957–2964CrossRefGoogle Scholar
  37. Lin HF, Chen TH, Liu SD (2010) Bioactivity of antifungal substance iturin A produced by Bacillus subtilis strain BS-99-H against Pestalotiopsis eugeniae, a causal pathogen of wax apple fruit rot. Plant Pathol Bull 19:225–233Google Scholar
  38. Lin S-C, Minton MA, Sharma MM, Georgiou G (1994) Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. Appl Environ Microbiol 60:31–38Google Scholar
  39. Liu Q, Lin J, Wang W, Huang H, Li S (2015) Production of surfactin isoforms by Bacillus subtilis BS-37 and its applicability to enhanced oil recovery under laboratory conditions. Biochem Eng J 93:31–37CrossRefGoogle Scholar
  40. Liu J, Hagberg I, Novitsky L, Hadj-Moussa H, Avis TJ (2014) Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens. Fungal Biol. doi: 10.1016/ j.funbio.2014.07.004 Google Scholar
  41. Loiseau C, Schlusselhuber M, Bigot R, Bertaux J, Berjeaud J-M, Verdon J (2015) Surfactin from Bacillus subtilis displays an unexpected anti-Legionella activity. Appl Microbiol Biotechnol. doi: 10.1007/s00253-014-6317-z Google Scholar
  42. Luo C, Liu X, Zhou H, Wang X, Chen Z (2014a) Identification of four NRPS gene clusters in Bacillus subtilis 916 for four families of lipopeptides biosynthesis and evaluation of their intricate functions to the typical phenotypic features. Appl Environ Microbiol. doi: 10.1128/AEM.02921-14 Google Scholar
  43. Luo C, Zhou H, Zou J, Wang X, Zhang R, Xiang Y, Chen Z (2014b) Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani. Appl Microbiol Biotechnol. doi: 10.1007/s00253-014-6195-4 Google Scholar
  44. Mnif I, Besbes S, Ellouze R, Chaabouni E S, Ghribi D (2012) Improvement of bread quality and bread shelf-life by Bacillus subtilis biosurfactant addition. Food Sci Biotechnol. doi: 10.1007/s10068-012
  45. Mnif I, Sahnoun R, Ellouze-Chaabouni S, Ghribi D (2013a) Evaluation of B. subtilis SPB1 biosurfactants’ potency for diesel-contaminated soil washing: optimization of oil desorption using Taguchi design. Environ Sci Pollut Res. doi: 10.1007/s11356-013-1894-4
  46. Mnif I, Besbes S, Ellouze-Ghorbel R, Ellouze-Chaabouni S, Ghribi D (2013b) Improvement of bread dough quality by Bacillus subtilis SPB1 biosurfactant addition: optimized extraction using response surface methodology. J Sci Food Agr 93:3055–3064CrossRefGoogle Scholar
  47. Mnif I, Ghribi D (2015) Lipopeptides biosurfactants, main classes and new insights for industrial, biomedical, and environmental applications. Bioplymers: Pept Sci. doi: 10.1002/bip.22630 Google Scholar
  48. Mnif I, Mnif S, Sahnoun R, Ayedi Y, Ellouze-Chaabouni S, Ghribi D (2015a) Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants. Env Sci Pollut Res. doi: 10.1007/s11356-015-4488-5 Google Scholar
  49. Mnif I, Hammami I, Triki MA, Azabou MC, Ellouze-Chaabouni S, Ghribi D (2015b) Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus, Fusarium solani. Env Sci Pollut Res (In press)Google Scholar
  50. Montealegre J, Valderrama L, Sánchez S, Herrera R, Besoain X, Pérez LM (2010) Biological control of Rhizoctonia solani in tomatoes with Trichoderma harzianum mutants. Elect J Biotechnol 13Google Scholar
  51. Morikawa M, Ito M, Imanaka T (1992) Isolation of a new surfactin producer Bacillus pumilus A-I, and cloning and nucleotide sequence of the regulator gene, psf. J Ferment Bioeng 74:255–261CrossRefGoogle Scholar
  52. Naeimi S, Okhovvat SO, Javan-Nikkhah M, Vagvolgyi C, Khosravi V, Kredics L (2010) Biological control of Rhizoctonia solani AG1-1A, the causal agent of rice sheath blight with Trichoderma strains. Phytopathol Mediterr 49:287–300Google Scholar
  53. Nielsen TH, Sørensen D, Tobiasen C, Andersen JB, Christophersen C, Givskov M, Sørensen J (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol 68:3416CrossRefGoogle Scholar
  54. Okigbo RN (2005) Biological control of postharvest fungal rot of yam (Dioscorea spp.) with Bacillus subtilis. Mycopathol 159:307–314CrossRefGoogle Scholar
  55. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125CrossRefGoogle Scholar
  56. Pathak KV, Keharia H, Gupta K, Thakur SS, Balaram P (2012) Lipopeptides from the banyan endophyte, Bacillus subtilis K1: mass spectrometric characterization of a library of fengycins. Am Soc Mass Spectrom 23:1716–1728CrossRefGoogle Scholar
  57. Pecci Y, Rivardo F, Martinotti MG, Allegrone G (2010) LC/ESI-MS/MS characterisation of lipopeptide biosurfactants produced by the Bacillus licheniformis V9T14 strain. J Mass Spectrom 45:772–778CrossRefGoogle Scholar
  58. Price NPJ, Rooney AP, Swezey JL, Perry E, Cohan FM (2007) Mass spectrometric analysis of lipopeptides from Bacillus strains isolated from diverse geographical locations. FEMS Microbiol Lett 271:83–89CrossRefGoogle Scholar
  59. Pyoung K, Ryu J, Kim YH, ChI YT (2010) Production of biosurfactant lipopeptides iturin A, fengycin, and surfactin from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20:138–145Google Scholar
  60. Raaijmakers JM, de Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiology 34:1037–1062CrossRefGoogle Scholar
  61. Ramarathnam R, Bo S, Chen Y, Dilantha Fernando WG, Xuewen G, de Kievit T (2007) Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Canad J Microbiol 53:901–911CrossRefGoogle Scholar
  62. Rebib H, Hedi A, Roussent M, Boudabous A, Limam F, Sadfi-Zouaoui N (2012) Biological control of Fusarium foot rot of wheat using fengycin-producing Bacillus subtilis isolated from salty soil. Afr J Biotechnol 11:8464–8475Google Scholar
  63. Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016CrossRefGoogle Scholar
  64. Sang HY, Kim J-B, Lim Y-H, Hong S-R, Song J-K, Kim S-S, Kwon S-W, Park I-C, Kim S-J, Yeo Y-S, Koo B-S (2005) Isolation and characterization of three kinds of lipopeptides produced by Bacillus subtilis JKK238 from Jeot-Kal of Korean traditional fermented fishes. Kor J Microbiol Biotechnol 33:295–301Google Scholar
  65. Senthilkumar M, Swarnalakshmi K, Govindasamy V, Lee YK, Annapurna K (2009) Biocontrol potential of soybean bacterial endophytes against charcoal rot fungus, Rhizoctonia bataticola. Curr Microbiol 58:288–293CrossRefGoogle Scholar
  66. Seydlová G, Svobodová J (2008) Review of surfactin chemical properties and the potential biomedical applications. Cent Eur J Med 3:123–133Google Scholar
  67. Sharma P, Raina AP, Dureja P (2012) Evaluation of the antifungal and phytotoxic effects of various essential oils against Sclerotium rolfsii (Sacc) and Rhizoctonia bataticola (Taub). Afr J Microbiol Res 6:6653–6660CrossRefGoogle Scholar
  68. Sujatha N, Ammani K (2013) Siderophore production by the isolates of fluorescent Pseudomonads. J Cur Res Rev 5:1–7Google Scholar
  69. Sun L, Lu Z, Bie X, Lu F, Yang S (2006) Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J Microbiol Biotechnol 22:1259–1266CrossRefGoogle Scholar
  70. Sundravadana S, Thirumurugan S, Alice D (2011) Exploration of molecular variability in Rhizoctonia Bataticola, the incitant of root rot disease of pulse crops. J Plant Protect Res 51:185–189Google Scholar
  71. Tang Q, Bie X, Lu Z, Lv F, Tao Y, Qu X (2014) Effects of fengycin from Bacillus subtilis fmbJ on apoptosis and necrosis in Rhizopus stolonifer. J Microbiol 52:675–680CrossRefGoogle Scholar
  72. Tendulkar SR, Saikumari YK, Patel V, Raghotama S, Munshi TK, Balaram P, Chattoo BB (2007) Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J Appl Microbiol 103:2331–2339CrossRefGoogle Scholar
  73. Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization–time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68:6210–6219CrossRefGoogle Scholar
  74. Waewthongrak W, Leelasuphakul W, McCollum G (2014) Cyclic lipopeptides from Bacillus subtilis ABS–S14 elicit defense-related gene expression in citrus fruit. PLoS ONE. doi: 10.1371/journal.pone.0109386 Google Scholar
  75. Walters D, Raynor L, Mitchell A, Walker R, Walker K (2004) Antifungal activities of four fatty acids against plant pathogenic fungi. Mycopathol 157:87–90CrossRefGoogle Scholar
  76. Willenbacher J, Syldatk C, Hausmann R (2014) Production of surfactin with Bacillus subtilis in a fermentation process with integrated foam fractionation. Chem Ing Tech 86:1593–1602CrossRefGoogle Scholar
  77. Yánez-Mendizábal V, Zeriouh H, Viñas I, Torres R, Usall J, de Vicente A, Pérez-García A, Teixidó N (2012) Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur J Plant Pathol 132:609–619CrossRefGoogle Scholar
  78. Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963CrossRefGoogle Scholar
  79. Yun-feng Y, Qi-qin L, Gang F, Gao-qing Y, Jian-hua M, Wei L (2012) Identification of antifungal substance (iturin A2) produced by Bacillus subtilis B47 and its effect on southern corn leaf blight. J Integr Agr 11:90–99CrossRefGoogle Scholar
  80. Zeriouh H, de Vicente A, Pérez-García A, Romero D (2013) Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environ Microbiol. doi: 10.1111/1462-2920.12271 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Inès Mnif
    • 1
    • 2
    • 7
    Email author
  • Ariadna Grau-Campistany
    • 3
  • Jonathan Coronel-León
    • 4
  • Inès Hammami
    • 5
  • Mohamed Ali Triki
    • 6
  • Angeles Manresa
    • 4
  • Dhouha Ghribi
    • 1
    • 2
  1. 1.Unit “Enzymes and Bioconversion,” National School of Engineers of SfaxUniversity of SfaxSfaxTunisia
  2. 2.Higher Institute of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
  3. 3.Faculty of Chemistry, Department of Organic ChemistryUniversity of BarcelonaBarcelonaSpain
  4. 4.Laboratory of Microbiology, Faculty of PharmacyUniversity of BarcelonaBarcelonaSpain
  5. 5.Higher School of Agriculture of KefKefTunisia
  6. 6.Laboratory “Amélioration et Protection des Ressources Génétiques de l’Olivier,” Institut de l’OlivierUniversity of SfaxSfaxTunisia
  7. 7.Inès Mnif, Unité “Enzyme et Bioconversion,” ENISSfaxTunisia

Personalised recommendations