Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 6, pp 5818–5829 | Cite as

Measurements of nitrous acid (HONO) in urban area of Shanghai, China

  • François Bernard
  • Mathieu Cazaunau
  • Benoît Grosselin
  • Bin Zhou
  • Jun Zheng
  • Peng Liang
  • Yujie Zhang
  • Xingnan Ye
  • Véronique Daële
  • Yujing Mu
  • Renyi Zhang
  • Jianmin Chen
  • Abdelwahid MelloukiEmail author
Research Article

Abstract

Nitrous acid (HONO), as a precursor of the hydroxyl radical (OH), plays an important role in the photochemistry of the troposphere, especially in the polluted urban atmosphere. A field campaign was conducted to measure atmospheric HONO concentration and that of other pollutants (such as NO2 and particle mass concentration) in the autumn of 2009 at Shanghai urban areas. HONO mixing ratios were simultaneously measured by three different techniques: long path absorption photometer (LOPAP), differential optical absorption spectroscopy (DOAS) and chemical ionization mass spectrometer (CIMS). The measurements showed that the mixing ratios of HONO were highly variable and depended strongly on meteorological parameters. The HONO levels ranged from 0.5 to 7 ppb with maximum values during early morning and minimum levels during late afternoon. The three instruments reproduced consistent diurnal pattern of HONO concentrations with higher concentration during the night compared to the daylight hours. Comparison of HONOLOPAP/HONOCIMS ratios during daytime and nighttime periods exhibited a non-systematic disagreement of 0.93 and 1.16, respectively. This would indicate different chemical compositions of sampled air for the LOPAP and the CIMS instruments during daytime and nighttime periods, which have possibly affected measurements. Mean HONO concentration reported by LOPAP was 33 % higher than by DOAS on the whole period with no significant difference between daytime and nighttime periods. This revealed a systematic deviation from both instruments. The present data provides complementary information of HONO ambient levels in the atmosphere of Shanghai urban areas.

Keywords

Nitrous acid Ambient levels Shanghai urban area LOPAP DOAS ID-CIMS Intercomparison 

Notes

Acknowledgments

This work was supported by Centre National de la Recherche Scientifique-Institute of Ecology and Environment (CNRS-INEE, France) through the Sino-French program, the Labex Voltaire (ANR-10-LABX-100-01), the Department of Environmental Science & Engineering of Fudan University (Shanghai) and the Chinese Academy of Science (Beijing). We thank the Pudong Meteorological Station for the particulate matter (PM1, PM2.5 and PM10) data. BZ thanks the financial support from the National Natural Science Foundation of China under Grant No. 21277029, 21477021. JZ acknowledges the support from National Natural Science Foundation of China (41275142 and 41575122) and Jiangsu Provincial Specially-Appointed Professors Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2015_5797_MOESM1_ESM.docx (18.4 mb)
ESM 1 (DOCX 18885 kb)

References

  1. Acker K, Febo A, Trick S, Perrino C, Bruno P, Wiesen P, Möller D, Wieprecht W, Auel R, Giusto M, Geyer A, Platt U, Allegrini I (2006) Nitrous acid in the urban area of Rome. Atmos Environ 40(17):3123–3133. doi: 10.1016/j.atmosenv.2006.01.028 CrossRefGoogle Scholar
  2. Alicke B, Platt U, Stutz J (2002) Impact of nitrous acid photolysis on the total hydroxyl radical budget during the Limitation of Oxidant Production/Pianura Padana Produzione di Ozono study in Milan. J Geophys Res 107(D22):8196. doi: 10.1029/2000jd000075 CrossRefGoogle Scholar
  3. Alicke B, Geyer A, Hofzumahaus A, Holland F, Konrad S, Pätz H-W, Schäfer J, Stutz J, Volz-Thomas A, Platt U (2003) OH formation by HONO photolysis during the BERLIOZ experiment. J Geophys Res 108(D4):8247. doi: 10.1029/2001JD000579 CrossRefGoogle Scholar
  4. Ammann M, Kalberer M, Jost DT, Tobler L, Rössler E, Piguet D, Gäggeler HW, Baltensperger U (1998) Heterogeneous production of nitrous acid on soot in polluted air masses. Nature 395:157–160CrossRefGoogle Scholar
  5. Arens F, Gutzwiller L, Baltensperger U, Gäggeler HW, Ammann M (2001) Heterogeneous reaction of NO2 on diesel soot particles. Environ Sci Technol 35(11):2191–2199. doi: 10.1021/es000207s CrossRefGoogle Scholar
  6. Aumont B, Madronich S, Ammann M, Kalberer M, Baltensperger U, Hauglustaine D, Brocheton F (1999) On the NO2 + soot reaction in the atmosphere. J Geophys Res 104(D1):1729–1736. doi: 10.1029/1998JD100023 CrossRefGoogle Scholar
  7. Aumont B, Chervier F, Laval S (2003) Contribution of HONO sources to the NOX/HOX/O3 chemistry in the polluted boundary layer. Atmos Environ 37(4):487–498. doi: 10.1016/s1352-2310(02)00920-2 CrossRefGoogle Scholar
  8. Chen H, Nanayakkara CE, Grassian VH (2012) Titanium dioxide photocatalysis in atmospheric chemistry. Chem Rev 112(11):5919–5948. doi: 10.1021/cr3002092 CrossRefGoogle Scholar
  9. Elshorbany YF, Kurtenbach R, Wiesen P, Lissi E, Rubio M, Villena G, Gramsch E, Rickard AR, Pilling MJ, Kleffmann J (2009) Oxidation capacity of the city air of Santiago, Chile. Atmos Chem Phys 9:2257–2273CrossRefGoogle Scholar
  10. Febo A, Perrino C, Allegrini I (1996) Measurement of nitrous acid in Milan, Italy, by DOAS and diffusion denuders. Atmos Environ 30(21):3599–3609CrossRefGoogle Scholar
  11. Finlayson-Pitts BJ, Wingen LM, Summer AL, Syomin D, Ramazan KA (2003) The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: an integrated mechanism. Phys Chem Chem Phys 5:223–242CrossRefGoogle Scholar
  12. Fortner EC, Zhao J, Zhang R (2004) Development of ion drift-chemical ionization mass spectrometry. Anal Chem 76(18):5436–5440CrossRefGoogle Scholar
  13. George C, Strekowski RS, Kleffmann J, Stemmler K, Ammann M (2005) Photoenhanced uptake of gaseous NO2 on solid organic compounds: a photochemical source of HONO? Faraday Discuss 130:195–210. doi: 10.1039/B417888M CrossRefGoogle Scholar
  14. Hao N, Zhou B, Chen D, Chen L-M (2006) Observations of nitrous acid and its relative humidity dependence in Shanghai. J Environ Sci 18(5):910–915CrossRefGoogle Scholar
  15. Heland J, Kleffmann J, Kurtenbach R, Wiesen P (2001) A new instrument to measure gaseous nitrous acid (HONO) in the atmosphere. Environ Sci Technol 35(15):3207–3212CrossRefGoogle Scholar
  16. Hirokawa J, Kato T, Mafuné F (2009) In situ measurements of atmospheric nitrous acid by chemical ionization mass spectrometry using chloride ion transfer reactions. Anal Chem 81(20):8380–8386. doi: 10.1021/ac901117b CrossRefGoogle Scholar
  17. Hou S, Tong S, Ge M, An J (2015) Comparison of atmospheric nitrous acid during severe haze and clean periods in Beijing, China. Atmos Environ. doi: 10.1016/j.atmosenv.2015.06.023 Google Scholar
  18. Huang X-F, He L-Y, Xue L, Sun T-L, Zeng L-W, Gong Z-H, Hu M, Zhu T (2012) Highly time-resolved chemical characterization of atmospheric fine particles during 2010 Shanghai World Expo. Atmos Chem Phys 12(11):4897–4907. doi: 10.5194/acp-12-4897-2012 CrossRefGoogle Scholar
  19. Kanaya Y, Cao R, Akimoto H, Fukuda M, Komazaki Y, Yokouchi Y, Koike M, Tanimoto H, Takegawa N, Kondo Y (2007) Urban photochemistry in central Tokyo: 1. Observed and modeled OH and HO2 radical concentrations during the winter and summer of 2004. J Geophys Res 112(D21312). doi: 10.1029/2007JD008670
  20. Kirchstetter TW, Harley RA, Littlejohn D (1996) Measurement of nitrous acid in motor vehicle exhaust. Environ Sci Technol 30(9):2843–2849. doi: 10.1021/es960135y CrossRefGoogle Scholar
  21. Kleffmann J, Becker KH, Wiesen P (1998) Investigation of the heterogeneous NO2 conversion on perchloric acid surfaces. J Chem Soc Faraday Trans 94:3289–3292CrossRefGoogle Scholar
  22. Kleffmann J, Heland J, Kurtenbach R, Lörzer J, Wiesen P (2002) A new instrument (LOPAP) for the detection of nitrous acid (HONO). Environ Sci Pollut Res Spec Issue 4:48–54Google Scholar
  23. Kleffmann J, Lörzer JC, Kern C, Trick S, Volkamer R, Rodenas M, Wirtz K (2006) Intercomparison of the DOAS and LOPAP techniques for the detection of nitrous acid (HONO). Atmos Environ 40:3640–3652CrossRefGoogle Scholar
  24. Kurtenbach R, Becker KH, Gomes JAG, Kleffmann J, Lörzer JC, Spittler M, Wiesen P, Ackermann R, Geyer A, Platt U (2001) Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel. Atmos Environ 35(20):3385–3394CrossRefGoogle Scholar
  25. Lammel G (1999) Formation of nitrous acid parameterization and comparison with observations, Report 286, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 36 pp.Google Scholar
  26. Levy M, Zhang R, Zheng J, Zhang AL, Xu W, Gomez-Hernandez M, Wang Y, Olaguer E (2014) Measurements of nitrous acid (HONO) using ion drift-chemical ionization mass spectrometry during the 2009 SHARP field campaign. Atmos Environ 94:231–240. doi: 10.1016/j.atmosenv.2014.05.024 CrossRefGoogle Scholar
  27. Li L, Chen J, Chen H, Yang X, Tang Y, Zhang R (2011) Monitoring optical properties of aerosols with cavity ring-down spectroscopy. J Aerosol Sci 42(4):277–284CrossRefGoogle Scholar
  28. Mérienne MF, Jenouvrier A, Coquart B (1995) The NO2 absorption spectrum. I: absorption cross-sections at ambient temperature in the 300–500 nm region. J Atmos Chem 20(3):281–297. doi: 10.1007/BF00694498 CrossRefGoogle Scholar
  29. Ndour M, D’Anna B, George C, Ka O, Balkanski Y, Kleffmann J, Stemmler K, Ammann M (2008) Photoenhanced uptake of NO2 on mineral dust: laboratory experiments and model simulations. Geophys Res Lett 35(L05812). doi: 10.1029/2007GL032006
  30. Pinto JP, Dibb J, Lee BH, Rappenglück B, Wood EC, Levy M, Zhang RY, Lefer B, Ren XR, Stutz J, Tsai C, Ackermann L, Golovko J, Herndon SC, Oakes M, Meng QY, Munger JW, Zahniser M, Zheng J (2014) Intercomparison of field measurements of nitrous acid (HONO) during the SHARP campaign. J Geophys Res 119:5583–5601. doi: 10.1002/2013JD020287 Google Scholar
  31. Qin M, Xie P, Su H, Gu J, Peng F, Li S, Zeng L, Liu J, Liu W, Zhang Y (2009) An observational study of the HONO-NO2 coupling at an urban site in Guangzhou City, South China. Atmos Environ 43(36):5731–5742CrossRefGoogle Scholar
  32. Spindler G, Hesper J, Brüggemann E, Dubois R, Müller T, Herrmann H (2003) Wet annular denuder measurements of nitrous acid: laboratory study of the artefact reaction of NO2 with S(IV) in aqueous solution and comparison with field measurements. Atmos Environ 37(19):2643–2662CrossRefGoogle Scholar
  33. Staffelbach T, Neftel A, Horowitz LW (1997) Photochemical oxidant formation over southern Switzerland: 2. Model results. J Geophys Res 102(D19):23363–23373. doi: 10.1029/97JD00932 CrossRefGoogle Scholar
  34. Stemmler K, Ammann M, Donders C, Kleffmann J, George C (2006) Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid. Nature 440:195–198. doi: 10.1038/nature04603 CrossRefGoogle Scholar
  35. Stutz J, Kim ES, Platt U, Bruno P, Perrino C, Febo A (2000) UV-visible absorption cross sections of nitrous acid. J Geophys Res 105(D11): 14585–14592. doi: 10.1029/2000JD900003 CrossRefGoogle Scholar
  36. Stutz J, Alicke B, Ackermann R, Geyer A, Wang S, White AB, Williams EJ, Spicer CW, Fast JD (2004) Relative humidity dependence of HONO chemistry in urban areas. J Geophys Res 109(D3), D03307. doi: 10.1029/2003JD004135 CrossRefGoogle Scholar
  37. Stutz J, Oh HJ, Whitlow SI, Anderson C, Dibb JE, Flynn JH, Rappenglück B, Lefer B (2010) Simultaneous DOAS and mist-chamber IC measurements of HONO in Houston, TX. Atmos Environ 44(33):4090–4098. doi: 10.1016/j.atmosenv.2009.02.003 CrossRefGoogle Scholar
  38. Su H, Cheng Y, Oswald R, Behrendt T, Trebs I, Meixner FX, Andreae MO, Cheng P, Zhang Y, Pöschl U (2011) Soil nitrite as a source of atmospheric HONO and OH radicals. Science 333(6049):1616–1618. doi: 10.1126/science.1207687 CrossRefGoogle Scholar
  39. Tong S, Hou S, Zhang Y, Chu B, Liu Y, He H, Zhao P, Ge M (2015) Comparisons of measured nitrous acid (HONO) concentrations in a pollution period at urban and suburban Beijing, in autumn of 2014. Sci China Chem 58(9):1393–1402CrossRefGoogle Scholar
  40. Volkamer R, Sheehy P, Molina LT, Molina MJ (2010) Oxidative capacity of the Mexico City atmosphere—Part 1: a radical source perspective. Atmos Chem Phys 10:6969–6991. doi: 10.5194/acp-10-6969-2010 CrossRefGoogle Scholar
  41. Wang S, Zhou R, Zhao H, Wang Z, Chen L, Zhou B (2013) Long-term observation of atmospheric nitrous acid (HONO) and its implication to local NO2 levels in Shanghai, China. Atmos Environ 77:718–724. doi: 10.1016/j.atmosenv.2013.05.071 CrossRefGoogle Scholar
  42. Winer AM, Biermann HW (1994) Long pathlength differential optical absorption spectroscopy (DOAS) measurements of gaseous HONO, NO2 and HCNO in the California South Coast Air Basin. Res Chem Intermed 20(3–5):423–445. doi: 10.1163/156856794X00405 CrossRefGoogle Scholar
  43. Yu Y, Geyer A, Xie P, Galle B, Chen L, Platt U (2004) Observations of carbon disulfide by differential optical absorption spectroscopy in Shanghai. Geophys Res Lett 31(11), L11107. doi: 10.1029/2004GL019543 Google Scholar
  44. Yu Y, Galle B, Panday A, Hodson E, Prinn R, Wang S (2009) Observations of high rates of NO2-HONO conversion in the nocturnal atmospheric boundary layer in Kathmandu, Nepal. Atmos Chem Phys 9:6401–6415. doi: 10.5194/acp-9-6401-2009 CrossRefGoogle Scholar
  45. Zhou X, Beine HJ, Honrath RE, Fuentes JD, Simpson W, Shepson PB, Bottenheim JW (2001) Snowpack photochemical production of HONO: a major source of OH in the Arctic boundary layer in springtime. Geophys Res Lett 28(21):4087–4090. doi: 10.1029/2001GL013531 CrossRefGoogle Scholar
  46. Zhou X, Gao H, He Y, Huang G, Bertman SB, Civerolo K, Schwab J (2003) Nitric acid photolysis on surfaces in low-NOX environments: significant atmospheric implications. Geophys Res Lett 30(23):2217. doi: 10.1029/2003GL018620 CrossRefGoogle Scholar
  47. Ziemba LD, Dibb JE, Griffin RJ, Anderson CH, Whitlow SI, Lefer BL, Rappenglück B, Flynn J (2010) Heterogeneous conversion of nitric acid to nitrous acid on the surface of primary organic aerosol in an urban atmosphere. Atmos Environ 44(33):4081–4089CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • François Bernard
    • 1
  • Mathieu Cazaunau
    • 1
  • Benoît Grosselin
    • 1
  • Bin Zhou
    • 2
  • Jun Zheng
    • 3
    • 6
  • Peng Liang
    • 1
    • 4
  • Yujie Zhang
    • 4
  • Xingnan Ye
    • 2
  • Véronique Daële
    • 1
  • Yujing Mu
    • 4
  • Renyi Zhang
    • 3
  • Jianmin Chen
    • 2
  • Abdelwahid Mellouki
    • 1
    • 5
    Email author
  1. 1.Institut de Combustion, Aérothermique, Réactivité et EnvironnementCentre National de la Recherche Scientifique/OSUCOrléans cedex 02France
  2. 2.Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan Tyndall Centre, Department of Environmental Science & EngineeringFudan UniversityShanghaiChina
  3. 3.Department of Atmospheric SciencesTexas A&M UniversityCollege StationUSA
  4. 4.Research Center for Eco-environmental of SciencesChinese Academy of SciencesBeijingChina
  5. 5.Environment Research Institute/School of Environmental Science & EngineeringShandong UniversityShandongChina
  6. 6.School of Environmental Science and EngineeringNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations