Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Assessing trace metal pollution through high spatial resolution of surface sediments along the Tunis Gulf coast (southwestern Mediterranean)

  • 273 Accesses

  • 7 Citations


Tunis Gulf (northern Tunisia, Mediterranean Sea) is of great economic importance due to its abundant fish resources. Rising urbanization and industrial development in the surrounding area have resulted in an increase in untreated effluents and domestic waste discharged into the gulf via its tributary streams. Metal (Cd, Pb, Hg, Cu, Zn, Fe, and Mn) and major element (Mg, Ca, Na, and K) concentrations were measured in the grain fine fraction <63 μm by atomic absorption spectrophotometry. Results showed varying spatial distribution patterns for metals, indicating complex origins and controlling factors such as anthropogenic activities. Sediment metal concentrations are ranked as follows: Fe > Mg > Zn > Mn > Pb > Cu > Cd > Hg. Metals tend to be concentrated in proximity to source points, suggesting that the mineral enrichment elements come from sewage of coastal towns and pollution from industrial dumps and located along local rivers, lagoons, and on the gulf shore itself. This study showed that trace metal and major element concentrations in surface sediments along the Tunis Gulf shores were lower than those found in other coastal areas of the Mediterranean Sea.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. ANZECC/ARMCANZ (2000) Australian National Guidelines for fresh and marine water quality. Australia and New Zealand Environment and Conservation Council/Agricultural and Resource Management Council of Australia and New Zealand, Canberra, ACT, Australia, pp 135–142

  2. Belabed B, Laffray X, Dhib A, Fertouna-Belakhal M, Turki S, Aley L (2013) Factors contributing to heavy metal accumulation in sediments and in the intertidal mussel Perna perna in the Gulf of Annaba (Algeria). Mar Pollut Bull 74:477–489

  3. Ben Charrada R (1997) Etude hydrodynamique et écologique du complexe petit golfe-lac de Tunis. Contribution à la modélisation de l’écosystème pélagique des eaux côtières-petit golfe de Tunis. Diplôme de Doctorat en génie hydraulique. Ecole Nationale d’Ingénieurs de Tunis, Tunisie, 339p

  4. Ben Hamza C (1994) Bilan hydrologique, sédimentologique et géochimique d’un bassin versant en zone semi-aride. La Mejerda (Tunisie du Nord). Impact sur l’environnement. PhD thesis, Pierre et Marie Curie University, Paris VI, 283p

  5. Ben Ismail, Sammari C, Gasparini GP, Béranger K, Brahim M, Aleya L (2012) Water masses exchanged through the Channel of Sicily: evidence for the presence of new water masses on the Tunisian side of the channel. Deep-Sea Research I 63:65–81

  6. Ben Ismail S, Schröeder K, Sammari C, Gasparini GP, Borghini M, Aleya L (2014) Interannual variability of water mass properties in the Tunisia-Sicily Channel. J Mar Syst 135:14–28

  7. Ben Salem Z, Capelli N, Grisey E, Baurand PE, Ayadi H, Aleya L (2014) First evidence of fish genotoxicity induced by heavy metals from landfill leachates: the advantage of using the RAPD-PCR technique. Ecotoxicol Environ Saf 101:90–96

  8. Bhakta JN, Munekage Y, Ohnishi K, Jana BB, Balcazar JL (2014) Isolation and characterization of cadmium- and arsenic-absorbing bacteria for bioremediation. Water Air Soil Pollut 225:2151

  9. Brahim M, Atoui A, Sammari C, Aleya L (2015) Surface sediment dynamics along with hydrodynamics along the shores of Tunis Gulf (north-eastern Mediterranean). J Afr Earth Sci 103:30–41

  10. Chouba L, Kraiem MM, Njimi W, Tissaoui CH, Thompson JR, Flower RJ (2007) Seasonal variation of heavy metals (Cd, Pb and Hg) in sediments and in mullet, Mugil Cephalus (Mugilidae), from the Ghar El Melh Lagoon (Tunisia). Transit Water Bull 4:45–52

  11. Christophoridis C, Dedepsidis D, Fytianos K (2009) Occurrence and distribution of selected heavy metals in the surface sediments of the Thermaikos Gulf, N. Greece. Assessement using pollution indicators. J Hazard Mater 168:1082–1091

  12. Dhib A, Fertouna-Bellakhal M, Turki S, Aleya L (2015) Harmful planktonic and epiphytic microalgae in a Mediterranean Lagoon : the contribution of the macrophyte Ruppia cirrhosa to microalgae dissemination. Harmful Algae 45:1–13

  13. Ennouri R, Chouba L, Magni P, Kraiem MM (2010) Spatial distribution of trace metals (Cd, Pb, Hg, Cu, Zn, Fe and Mn) and oligo-elements (Mg, Ca, Na and K) in surface sediments of the Gulf of Tunis (Northern Tunisia). Environ Monit Assess 163:229–239

  14. Forman RTT, Sperling D, Bissonette JA, Clevenger AR, Cutshall CD, Dale V, Fahrig H, France L, Goldman R, Heanue CR, Jones K, Swanson JA, Turrentine FJ, Winter TC (2003) Road ecology: science and solutions. Island Press, Washington DC

  15. Gargouri D, Azri C, Serbaji MM, Jedaoui Y, Montacer M (2011) Heavy metal concentrations in the surface marine sediments of Sfax coast. Tunisia Environ Monit Assess 175:519–530

  16. Haswell SJ (1991) Atomic absorption spectrometry, volume 5: theory, design and applications (analytical spectroscopy library). Elsevier Science

  17. Helali MA, Oueslati W, Zaaboub N, Added A, Abdeljaoued S (2013) Geochemistry of marine sediments in Mejerda River Delta, Tunisia. Chemical Speciation and Bioavailability, 25. doi:10.3184/095422913X13840098160825

  18. Hooda V (2007) Phytoremediation of toxic metals from soil and waste water. J Environ Biol 28:367–376

  19. Jdid EA, Blazy P, Kamoun S, Guedria A, Marouf B, Kitane S (1999) Environmental impact of mining activity of the pollution of the Mejerda river, north-west Tunisia. Bull Eng Geol Environ 57:273–280

  20. Liu WX, Li XD, Shem ZG, Wang DC, Wai OWH, Li YS (2003) Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary. Environ Pollut 121:377–388

  21. Mirlean N, Andrus VE, Baisch P (2003) Mercury pollution sources in sediments of Patos lagoon estuary, southern Brazil. Mar Pollut Bull 46:331–334

  22. Mlayah A, Ferreira da Silva E, Rocha F, Ben Hamza C, Charef A, Noronha F (2009) The Oued Mellègue: mining activity, stream sediments and dispersion of base metals in natural environments, North-western Tunisia. J Geochem Explor 102:27–36

  23. Moldenhauer KM, Zielhofer C, Faust D (2008) Heavy metals as indicators for Holocene sediment provenance in a semi-arid Mediterranean catchment in northern Tunisia. Quat Int 189:129–134

  24. Mzoughi N, Chouba L (2011) Distribution and partitioning of aliphatic hydrocarbons and polycyclic aromatic hydrocarbons between water, suspended particulate matter, and sediment in harbours of the West coastal of the Gulf of Tunis (Tunisia). J Environ Monit 13:689–698

  25. Naidu S, Blanchard A, Kelley JJ, Goering JJ, Hameedi MJ, Baskaran M (1997) Heavy metals in Chukchi Sea sediments as compared to selected circum-Arctic shelves. Mar Pollut Bull 35:260–269

  26. Neşer G, Kontas A, Ünsalan D, Uluturhan E, Altay O, Darilmaz E, Küçüksezgin F, Tekoğul N, Yercan F (2012) Heavy metals contamination levels at the coast of Aliaģa (Turkey) ship recycling zone. Mar Pollut Bull 64:882–887

  27. Nicholson K, Hein JR, Bühn B, Dasgupta S (1997) Manganese mineralization: geochemistry and mineralogy of terrestrial and marine deposits. Geological Society of London

  28. NOAA (National Oceanic and Atmospheric Administration) (1999) Screening quick reference tables (SquiRTs) http://response.restoration.noaa.gov/cpr/sediment/squirt/squirt.html

  29. Pazi I (2011) Assessment of heavy metal contamination in Candarli Gulf sediment, Eastern Aegean Sea. Environ Monit Assess 174:199–208

  30. Rais M (1999) Géochimie des métaux lourds (Fe, Mn, Pb, Zn, Cu, Ni et Cd) dans les eaux et les sédiments du littoral du golfe de Tunis. Mobilité et impact des activités anthropiques. Thèse de Doctorat en Géolologie. Faculté des Sciences de Tunis, 190 p

  31. Roussiez V, Ludwig W, Probst JL, Monaco A (2006) Background levels of heavy metals in surficial sediments of the Gulf of Lions (NW Mediterranean): an approach based on 133Cs normalization and lead isotope measurements. Environ Pollut 138:167–177

  32. Schintu M, Marras B, Maccioni A, Puddu D, Meloni P, Contu A (2009) Monitoring of trace metals in coastal sediments from sites around Sardinia, Western Mediterranean. Mar Pollut Bull 58:1566–1587

  33. Shao Q (2000) Estimation of hazardous concentrations based on NOEC toxicity data: an alternative approach. Environmetrics 11:583–595

  34. Siddique A, Mumtaz M, Zaigham N, Mallick K-A, Saied S, Zahir E, Khwaja H-A (2009) Heavy metal toxicity levels in the coastal sediments of the Arabian Sea along the urban Karachi (Pakistan) region. Mar Pollut Bull 58:1406–1419

  35. Simpson SL, Ward D, Strom D, Jolley DF (2012) Oxidation of acid-volatile sulfide in surface sediments increases the release and toxicity of copper to the benthic amphipod Melita plumulosa. Chemosphere 88(8):953–961

  36. Taylor SE, Matthai C (2001) Small-scale spatial and temporal variance in the concentration of heavy metals in aquatic sediments: a review and some new concepts. Environ Pollut 113:357–372

  37. Tranchina L, Basile S, Brai M, Caruso A, Cosentino C, Micciche S (2008) Distribution of heavy metals in marine sediments of Palermo Gulf (Sicily, Italy). Water Air Soil Pollut 191:245–256

  38. Twining J, Perera J, Nguyen V et al (2005) AQUARISK. A computer code for aquatic ecological risk assessment (Version 3.2). Technical reference manual. ANSTO/M-127 vol 1. Australian Nuclear Science and Technology Organisation, Menai, NSW, Australia

  39. Veinott G, Perron-Cashman S, Anderson MR (2001) Baseline metal concentrations in coastal Labrador sediments. Mar Pollut Bull 42:182–192

  40. Warnken KW, Gill GA, Griffin LL, Santchi PH (2001) Sediment-water exchange of Mn, Fe, Ni and Zn in Galveston Bay, Texas. Mar Chem 73:215–231

  41. Weyrauch P, Matzinger A, Pawlowsky-Reusing E, Plume S, von Seggern D, Heinzmann B, Schroeder K, Rauault P (2010) Contribution of combined sewer overflows to trace contaminant load in urban streams. Wat Res 44:4451–4462

  42. Zaaboub N, Ounis A, Helali MA, Béjaoui B, Lillebø AI, Ferreira da Silva E, Aleya L (2014a) Phosphorus speciation in sediments and assessment of nutrient exchange at the water-sediment interface in a Mediterranean lagoon: implications for management and restoration. Ecol Eng 73:115–125

  43. Zaaboub N, Oueslati W, Helali MA, Abdeljaouad S, Huertas JF, Galindo AL (2014b) Trace elements in different marine sediment fractions of the Gulf of Tunis (Central Mediterranean Sea). Chem Speciat Bioavailab 26:1–12

  44. Zaaboub N, Martins MVA, Dhib A, Béchir B, Galgani F, El Bour M, Aleya L (2015) Accumulation of trace metals in sediments in a Mediterranean Lagoon: usefulness of metal sediment fractionation and elutriate. Environ Pollut 207:226–237

  45. Zhang L, Ye X, Feng H, Jing Y, Ouyang T, Yu X, Ling R, Gao C, Chen W (2007) Heavy metal contamination in western Xiamen Bay sediments and its vicinity. China Mar Pollut Bull 5:974–982

  46. Zhou F, Guo HC, Hao ZJ (2007) Spatial distribution of heavy metals in Hong Kong’s marine sediments and their human impacts: a GIS-based chemometric approach. Mar Pollut Bull 54:1372–1384

Download references


This study was made possible by the Tunisian (Institut National des Sciences et Technologies de la Mer, Laboratoire Milieu Marin) - French (Chrono-Environment Laboratory, Besançon, UMR CNRS 6249.) Cooperation Project. We would like to thank all the participants for their active participation and valuable contributions.

Author information

Correspondence to Lotfi Aleya.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ennouri, R., Zaaboub, N., Fertouna-Bellakhal, M. et al. Assessing trace metal pollution through high spatial resolution of surface sediments along the Tunis Gulf coast (southwestern Mediterranean). Environ Sci Pollut Res 23, 5322–5334 (2016). https://doi.org/10.1007/s11356-015-5775-x

Download citation


  • Tunis Gulf
  • Surface sediments
  • Metal contamination
  • AQUARISK model