Advertisement

Environmental Science and Pollution Research

, Volume 24, Issue 10, pp 9016–9025 | Cite as

Does residual H2O2 result in inhibitory effect on enhanced anaerobic digestion of sludge pretreated by microwave-H2O2 pretreatment process?

  • Jibao Liu
  • Ruilai Jia
  • Yawei Wang
  • Yuansong Wei
  • Junya Zhang
  • Rui Wang
  • Xing Cai
Eco-aquaculture, sustainable development and public health

Abstract

This study investigated the effects of residual H2O2 on hydrolysis-acidification and methanogenesis stages of anaerobic digestion after microwave-H2O2 (MW-H2O2) pretreatment of waste activated sludge (WAS). Results showed that high sludge solubilization at 35–45 % was achieved after pretreatment, while large amounts of residual H2O2 remained and refractory compounds were thus generated with high dosage of H2O2 (0.6 g H2O2/g total solids (TS), 1.0 g H2O2/g TS) pretreatment. The residual H2O2 not only inhibited hydrolysis-acidification stage mildly, such as hydrolase activity, but also had acute toxic effect on methanogens, resulting in long lag phase, low methane yield rate, and no increase of cumulative methane production during the 30-day BMP tests. When the low dosage of H2O2 at 0.2 g H2O2/g TS was used in MW-H2O2 pretreatment, sludge anaerobic digestion was significantly enhanced. The cumulative methane production increased by 29.02 %, but still with a lag phase of 1.0 day. With removing the residual H2O2 by catalase, the initial lag phase of hydrolysis-acidification stage decreased from 1.0 to 0.5 day.

Keywords

Microwave Hydrogen peroxide Sludge Anaerobic digestion Inhibition Enzyme activity 

Notes

Acknowledgments

This work is supported by the National Water Pollution Control and Management Technology Major Project of China (2012ZX07202-005 and 2015ZX07203-005).

Supplementary material

11356_2015_5704_MOESM1_ESM.docx (368 kb)
ESM 1 (DOCX 367 kb)

References

  1. Bilgin Oncu N, Akmehmet Balcioglu I (2013) Microwave-assisted chemical oxidation of biological waste sludge: simultaneous micropollutant degradation and sludge solubilization. Bioresour Technol 146:126–134. doi: 10.1016/j.biortech.2013.07.043 CrossRefGoogle Scholar
  2. Bougrier C, Delgenès JP, Carrère H (2007) Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge. Biochem Eng J 34:20–27. doi: 10.1016/j.bej.2006.11.013 CrossRefGoogle Scholar
  3. Carrère H, Dumas C, Battimelli A et al (2010) Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater 183:1–15. doi: 10.1016/j.jhazmat.2010.06.129 CrossRefGoogle Scholar
  4. Carvajal A, Peña M, Pérez-Elvira S (2013) Autohydrolysis pretreatment of secondary sludge for anaerobic digestion. Biochem Eng J 75:21–31. doi: 10.1016/j.bej.2013.03.002 CrossRefGoogle Scholar
  5. Chi Y, Li Y, Fei X et al (2011) Enhancement of thermophilic anaerobic digestion of thickened waste activated sludge by combined microwave and alkaline pretreatment. J Environ Sci 23:1257–1265. doi: 10.1016/S1001-0742(10)60561-X Google Scholar
  6. Doğan I, Sanin FD (2009) Alkaline solubilization and microwave irradiation as a combined sludge disintegration and minimization method. Water Res 43:2139–2148. doi: 10.1016/j.watres.2009.02.023 CrossRefGoogle Scholar
  7. Dolfing J, Mulder JW (1985) Comparison of methane production rate and coenzyme F420 content of methanogenic consortia in anaerobic granular sludge. Appl Environ Microbiol 49:1142–1145Google Scholar
  8. Eskicioglu C, Kennedy KJ, Droste RL (2006) Characterization of soluble organic matter of waste activated sludge before and after thermal pretreatment. Water Res 40:3725–3736. doi: 10.1016/j.watres.2006.08.017 CrossRefGoogle Scholar
  9. Eskicioglu C, Droste RL, Kennedy KJ (2007a) Performance of anaerobic waste activated sludge digesters after microwave pretreatment. Water Environ Res 79:2265–2273. doi: 10.2175/106143007X176004 CrossRefGoogle Scholar
  10. Eskicioglu C, Kennedy KJ, Droste RL (2007b) Enhancement of batch waste activated sludge digestion by microwave pretreatment. Water Environ Res 79:2304–2317. doi: 10.2175/106143007X184069 CrossRefGoogle Scholar
  11. Eskicioglu C, Terzian N, Kennedy KJ et al (2007c) Athermal microwave effects for enhancing digestibility of waste activated sludge. Water Res 41:2457–2466. doi: 10.1016/j.watres.2007.03.008 CrossRefGoogle Scholar
  12. Eskicioglu C, Kennedy KJ, Droste RL (2008a) Initial examination of microwave pretreatment on primary, secondary and mixed sludges before and after anaerobic digestion. Water Sci Technol 57:311–317. doi: 10.2166/wst.2008.010 CrossRefGoogle Scholar
  13. Eskicioglu C, Prorot A, Marin J et al (2008b) Synergetic pretreatment of sewage sludge by microwave irradiation in presence of H2O2 for enhanced anaerobic digestion. Water Res 42:4674–4682. doi: 10.1016/j.watres.2008.08.010 CrossRefGoogle Scholar
  14. Eskicioglu C, Kennedy KJ, Droste RL (2009) Enhanced disinfection and methane production from sewage sludge by microwave irradiation. Desalination 248:279–285. doi: 10.1016/j.desal.2008.05.066 CrossRefGoogle Scholar
  15. He P, Lü F, Zhang H et al (2007) Sewage sludge in China: challenges toward a sustainable future. Water Pract Technol 2:1–8. doi: 10.2166/WPT.2007083 Google Scholar
  16. Houtmeyers S, Degrève J, Willems K et al (2014) Comparing the influence of low power ultrasonic and microwave pre-treatments on the solubilisation and semi-continuous anaerobic digestion of waste activated sludge. Bioresour Technol 171:44–49. doi: 10.1016/j.biortech.2014.08.029 CrossRefGoogle Scholar
  17. Jang J-H, Ahn J-H (2013) Effect of microwave pretreatment in presence of NaOH on mesophilic anaerobic digestion of thickened waste activated sludge. Bioresour Technol 131:437–442. doi: 10.1016/j.biortech.2012.09.057 CrossRefGoogle Scholar
  18. Jang S, Imlay JA (2007) Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes. J Biol Chem 282:929–937. doi: 10.1074/jbc.M607646200 CrossRefGoogle Scholar
  19. Jiang G, Yuan Z (2013) Synergistic inactivation of anaerobic wastewater biofilm by free nitrous acid and hydrogen peroxide. J Hazard Mater 250–251:91–98. doi: 10.1016/j.jhazmat.2013.01.047 CrossRefGoogle Scholar
  20. Jin L, Zhang G, Tian H (2014) Current state of sewage treatment in China. Water Res 66:85–98. doi: 10.1016/j.watres.2014.08.014 CrossRefGoogle Scholar
  21. Kang YW, Cho MJ, Hwang KY (1999) Correction of hydrogen peroxide interference on standard chemical oxygen demand test. Water Res 33:1247–1251. doi: 10.1016/S0043-1354(98)00315-7 CrossRefGoogle Scholar
  22. Kelessidis A, Stasinakis AS (2012) Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag (New York, NY) 32:1186–1195. doi: 10.1016/j.wasman.2012.01.012 CrossRefGoogle Scholar
  23. Kim J, Park C, Kim T-H et al (2003) Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J Biosci Bioeng 95:271–275. doi: 10.1263/jbb.95.271 CrossRefGoogle Scholar
  24. Kim D-H, Cho S-K, Lee M-K, Kim M-S (2013) Increased solubilization of excess sludge does not always result in enhanced anaerobic digestion efficiency. Bioresour Technol 143:660–664. doi: 10.1016/j.biortech.2013.06.058 CrossRefGoogle Scholar
  25. Kubota K, Ozaki Y, Matsumiya Y, Kubo M (2009) Analysis of relationship between microbial and methanogenic biomass in methane fermentation. Appl Biochem Biotechnol 158:493–501. doi: 10.1007/s12010-008-8477-8 CrossRefGoogle Scholar
  26. Kuglarz M, Karakashev D, Angelidaki I (2013) Microwave and thermal pretreatment as methods for increasing the biogas potential of secondary sludge from municipal wastewater treatment plants. Bioresour Technol 134:290–297. doi: 10.1016/j.biortech.2013.02.001 CrossRefGoogle Scholar
  27. Liu B, Wei Q, Zhang B, Bi J (2013) Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China. Sci Total Environ 447:361–369. doi: 10.1016/j.scitotenv.2013.01.019 CrossRefGoogle Scholar
  28. Liu J, Tong J, Wei Y, Wang Y (2015) Microwave and its combined processes: an effective way for enhancing anaerobic digestion and dewaterability of sewage sludge? Journal of Water Reuse and Desalination. doi: 10.2166/wrd.2015.120 Google Scholar
  29. Mao T, Show K-Y (2007) Influence of ultrasonication on anaerobic bioconversion of sludge. Water Environ Res 79:436–441. doi: 10.2175/106143006X123049 CrossRefGoogle Scholar
  30. Mehdizadeh SN, Eskicioglu C, Bobowski J, Johnson T (2013) Conductive heating and microwave hydrolysis under identical heating profiles for advanced anaerobic digestion of municipal sludge. Water Res 47:5040–5051. doi: 10.1016/j.watres.2013.05.055 CrossRefGoogle Scholar
  31. Mishra S, Imlay JA (2013) An anaerobic bacterium, Bacteroides thetaiotaomicron, uses a consortium of enzymes to scavenge hydrogen peroxide. Mol Microbiol 90:1356–1371. doi: 10.1111/mmi.12438 CrossRefGoogle Scholar
  32. Mudhoo A, Sharma SK (2011) Microwave irradiation technology in waste sludge and wastewater treatment research. Crit Rev Environ Sci Technol 41:999–1066. doi: 10.1080/10643380903392767 CrossRefGoogle Scholar
  33. Pilli S, Yan S, Tyagi RD, Surampalli RY (2014) Thermal pretreatment of sewage sludge to enhance anaerobic digestion: a review. Crit Rev Environ Sci Technol 45:669–702. doi: 10.1080/10643389.2013.876527 CrossRefGoogle Scholar
  34. Qiang H, Xingfu S, Li G, Hainan A (2014) Two-phase integrated sludge thickening and digestion (TISTD) reactor microbial diversity and community structure succession rules. World J Microbiol Biotechnol 30:3137–3147. doi: 10.1007/s11274-014-1741-x CrossRefGoogle Scholar
  35. Rajendran K, Kankanala HR, Lundin M, Taherzadeh MJ (2014) A novel process simulation model (PSM) for anaerobic digestion using Aspen Plus. Bioresour Technol 168:7–13. doi: 10.1016/j.biortech.2014.01.051 CrossRefGoogle Scholar
  36. Raposo F, De la Rubia MA, Fernández-Cegrí V, Borja R (2012) Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renew Sust Energ Rev 16:861–877. doi: 10.1016/j.rser.2011.09.008 CrossRefGoogle Scholar
  37. Sambusiti C, Rollini M, Ficara E et al (2014) Enzymatic and metabolic activities of four anaerobic sludges and their impact on methane production from ensiled sorghum forage. Bioresour Technol 155:122–128. doi: 10.1016/j.biortech.2013.12.055 CrossRefGoogle Scholar
  38. Shahriari H, Warith M, Hamoda M, Kennedy KJ (2012) Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide. Waste Manag (New York, NY) 32:41–52. doi: 10.1016/j.wasman.2011.08.012 CrossRefGoogle Scholar
  39. Shen Y, Linville JL, Urgun-demirtas M et al (2015) An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States : challenges and opportunities towards energy-neutral WWTPs. Renew Sust Energ Rev 50:346–362CrossRefGoogle Scholar
  40. Sólyom K, Mato RB, Pérez-Elvira SI, Cocero MJ (2011) The influence of the energy absorbed from microwave pretreatment on biogas production from secondary wastewater sludge. Bioresour Technol 102:10849–10854. doi: 10.1016/j.biortech.2011.09.052 CrossRefGoogle Scholar
  41. The State Council of the people’s Republic of China (2015) Action Plan for Water Pollution Prevention and ControlGoogle Scholar
  42. Toreci I, Kennedy KJ, Droste RL (2009) Evaluation of continuous mesophilic anaerobic sludge digestion after high temperature microwave pretreatment. Water Res 43:1273–1284. doi: 10.1016/j.watres.2008.12.022 CrossRefGoogle Scholar
  43. Toreci I, Droste RL, Kennedy KJ (2011) Mesophilic anaerobic digestion with high-temperature microwave pretreatment and importance of inoculum acclimation. Water Environ Res 83:549–559. doi: 10.2175/106143010X12780288628651 CrossRefGoogle Scholar
  44. Tyagi VK, Lo S-L (2011) Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up to date review. Rev Environ Sci Biotechnol 10:215–242. doi: 10.1007/s11157-011-9244-9 CrossRefGoogle Scholar
  45. Wang Y, Wei Y, Liu J (2009) Effect of H2O2 dosing strategy on sludge pretreatment by microwave-H2O2 advanced oxidation process. J Hazard Mater 169:680–684. doi: 10.1016/j.jhazmat.2009.04.001 CrossRefGoogle Scholar
  46. Wang Y, Xiao Q, Liu J et al (2015) Pilot-scale study of sludge pretreatment by microwave and sludge reduction based on lysis–cryptic growth. Bioresour Technol 190:140–147CrossRefGoogle Scholar
  47. Wilson CA, Novak JT (2009) Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water Res 43:4489–4498. doi: 10.1016/j.watres.2009.07.022 CrossRefGoogle Scholar
  48. Wong WT, Chan WI, Liao PH, Lo KV (2006) A hydrogen peroxide/ microwave advanced oxidation process for sewage sludge treatment. J Environ Sci Health, Part A: Tox Hazard Subst Environ Eng 41:2623–2633. doi: 10.1080/10934520600928086 CrossRefGoogle Scholar
  49. Xiao Q, Wei Y, Wang Y, Zeng F (2012a) Comparison of sludge solubilization by microwave and its combined processes. China Water & Wastewater 28:61–64Google Scholar
  50. Xiao Q, Yan H, Wei Y et al (2012b) Optimization of H2O2 dosage in microwave-H2O2 process for sludge pretreatment with uniform design method. J Environ Sci 24:2060–2067. doi: 10.1016/S1001-0742(11)60998-4 CrossRefGoogle Scholar
  51. Yang G, Zhang G, Wang H (2015) Current state of sludge production, management, treatment and disposal in China. Water Res 78:60–73. doi: 10.1016/j.watres.2015.04.002 CrossRefGoogle Scholar
  52. Yu Y, Chan WI, Lo IW et al (2010) Sewage sludge treatment by a continuous microwave enhanced advanced oxidation process. Can J Civ Eng 37:796–804. doi: 10.1139/L10-044 CrossRefGoogle Scholar
  53. Zhao Z-H, Sakagami Y, Osaka T (1998) Toxicity of hydrogen peroxide produced by electroplated coatings to pathogenic bacteria. Can J Microbiol 44:441–447. doi: 10.1139/cjm-44-5-441 CrossRefGoogle Scholar
  54. Zhou QH, Wu ZB, Cheng SP et al (2005) Enzymatic activities in constructed wetlands and di-n-butyl phthalate (DBP) biodegradation. Soil Biol Biochem 37:1454–1459. doi: 10.1016/j.soilbio.2005.01.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jibao Liu
    • 1
  • Ruilai Jia
    • 1
  • Yawei Wang
    • 1
  • Yuansong Wei
    • 1
  • Junya Zhang
    • 1
  • Rui Wang
    • 1
  • Xing Cai
    • 2
  1. 1.State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  2. 2.Shenyang Academy of Environmental ScienceShenyangChina

Personalised recommendations