Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mercury toxicity to terrestrial snails in a partial life cycle experiment

  • 273 Accesses

  • 6 Citations

Abstract

Despite growing concerns about the potential adverse effects of elevated mercury (Hg) concentrations in the terrestrial environment, only a few toxicity data are available for soil invertebrates. The chronic toxicity of inorganic Hg—Hg(II)—through food or soil contaminations was therefore assessed for the snail Cantareus aspersus, a well-recognized soil quality bioindicator. The 28-day EC50s (the concentrations causing 50 % effect) for the snail growth were 600 and 5048 mg Hg kg−1 for food and soil, respectively. A survey of growth over its entire duration (91 days) allowed to show that the effects took place rapidly after the beginning of exposure and persisted in the long term. Reproduction was also impaired, and we established 28-day EC50s for sexual maturation and fecundity of 831 and 339 mg Hg kg−1, respectively, for food and 1719 and 53 mg Hg kg−1, respectively, for soil. Total Hg analyses in snails exposed to contaminated matrices revealed important bioaccumulation capacities up to 2000 mg Hg kg−1 viscera. Critical limits in internal Hg concentration of about 500 and 1000 mg Hg kg−1 were determined as thresholds for the induction of growth toxicity through food and soil exposure, respectively. These different values underlined differences in the uptake and toxicological dynamics of Hg according to its bioavailability in the source of exposure.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abbasi SA, Soni R (1983) Stress-induced enhancement of reproduction in earthworm Octochaetus pattoni exposed to chromium (VI) and mercury (II)—implications in environmental management. Int J Environ Stud 22:43–47

  2. Arbestain M‐C, Rodríguez‐Lado L, Bao M, Macías F (2008) Assessment of mercury‐polluted soils adjacent to an old mercury‐fulminate production plant. Appl Environ Soil Sci 2009:1–9

  3. Azevedo R and Rodriguez E (2012) Phytotoxicity of mercury in plants: a review. Hindawi Publishing Corporation, J Bot. Article ID 848814, 6 pp. doi: 10.1155/2012/848614

  4. Baudrimont M, Metivaud J, Maury‐Brachet R, Ribeyre F, Boudou A (1997) Bioaccumulation and metallothionein response in the Asiatic clam (Corbicula fluminea) after experimental exposure to cadmium and inorganic mercury. Environ Toxicol Chem 16:2096–2105

  5. Chevalier L, Desbuquois C, Le Lannic J, Charrier M (2001) Poaceae in the natural diet of the snails Helix aspersa Müller (Gastropoda, Pulmonata). CR Acad Sci III 324:979–987

  6. Coeurdassier M, Gomot-de Vaufleury A, Lovy C, Badot PM (2002) Is the cadmium uptake from soil important in bioaccumulation and toxic effects for snails? Ecotoxicol Environ Saf 53:425–431

  7. Crowder A (1991) Acidification, metals and macro-phytes. Environ Pollut 71:171–203

  8. Dallinger R (1993) Strategies of metal detoxification in terrestrial invertebrates. In: Dallinger R, Rainbow P (eds) Ecotoxicology of metals in invertebrates. Lewis Publishers, Boca Raton, pp 245–289

  9. de Vaufleury A (2015) Landsnail for ecotoxicological assessment of chemicals and soil contamination. In: Armon RH, Hänninen O (eds) Environmental indicators. Springer, Dordrecht, pp 345–391

  10. de Vaufleury A, Coeurdassier M, Pandard P, Scheifler R, Lovy C, Crini N, Badot PM (2006) How terrestrial snails can be used in risk assessment of soils. Environ Toxicol Chem 25:797–806

  11. Fischer E, Koszorus L (1992) Sublethal effects, accumulation capacities and elimination rates of As, Hg and Se in the manure worm, Eisenia fetida (Oligochaeta, Lumbricidae). Pedobiologia 36:172–178

  12. Gimbert F, de Vaufleury A, Douay F, Scheifler R, Coeurdassier M, Badot PM (2006) Modelling chronic exposure to contaminated soil. A toxicokinetic approach with terrestrial snail Helix aspersa. Environ Int 32:866–875

  13. Gimbert F, de Vaufleury A, Douay F, Coeurdassier C, Scheifler R, Badot PM (2008a) Long-term responses of snails exposed to cadmium-contaminated soils in a partial life-cycle experiment. Ecotoxicol Environ Saf 70:138–146

  14. Gimbert F, Vijver MG, Coeurdassier M, Scheifler R, Peijnenburg WJGM, Badot PM, de Vaufleury A (2008b) How subcellular partitioning can help to understand heavy metal accumulation and elimination kinetics in snails. Environ. Toxicol. Chem. 27:1284–1292

  15. Gomot A (1997) Dose-dependent effects of cadmium on the growth of snails in toxicity bioassays. Arch Environ Contam Toxicol 33:209–216

  16. Gomot L. and Enée J (1980) Biologie de la reproduction de l’escargot Helix aspersa Müller : les phases de croissance et la différenciation sexuelle. Atti Accademia Fisiocritici Siena, 73–85

  17. Gomot-de Vaufleury A (2000) Standardized growth toxicity testing (Cu, Zn, Pb, and Pentachlorophenol) with Helix aspersa. Ecotoxicol Environ Saf 46:41–50

  18. Gomot-de Vaufleury A (2001) Chapter 9: Regulation of growth and reproduction. In: Barker GM (ed) The biology of terrestrial molluscs. CAB International, Wallingford, pp 331–355

  19. Gudbrandsen M, Sverdrup LE, Aamodt S, Stenersen J (2007) Short-term pre-exposure increases earthworm tolerance to mercury. Eur J Soil Biol 43:S261–S267

  20. Höckner M, Stefanon K, de Vaufleury A, Monteiro F, Pérez‐Rafael S, Palacios O, Capdevila M, Atrian S, Dallinger R (2011) Physiological relevance and contribution to metal balance of specific and non‐specific metallothionein isoforms in the garden snail, Cantareus aspersus. Biometals 24:1079–1092

  21. Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier Applied Science, New-York

  22. ISO 15952 (2006) Soil quality. Effects of pollutants on juvenile land snails (Helicidae), Determination of the effects on growth by soil contamination. International Standardisation Organisation, Geneva, Switzerland

  23. Jager T (2012) Bad habits die hard. The NOEC’s persistence reflects poorly on ecotoxicology. Environ Toxicol Chem 31:228–229

  24. Jager T, Barsi A, Ducrot V (2013) Hormesis on life-history traits: is there such thing as a free lunch? Ecotoxicology 22:263–270

  25. Kooijman SALM, Baas J, Bontje D, Broerse M, Van Gestel CAM, Jager T (2009) Ecotoxicological applications of dynamic energy budget theory. In: Devillers J (ed) Ecotoxicology Modeling. Springer, Berlin, pp 237–259

  26. Landis WG, Chapman PM (2011) Well past time to stop using NOELs and LOELs. Integr Environ Assess Manag 7:vi–vii

  27. Lanno R, Wells J, Conder J, Bradham K, Basta N (2004) The bioavailability of chemicals in soil for earthworms. Ecotoxicol Environ Saf 57:39–47

  28. Laskowski R, Hopkin SP (1996) Effect of Zn, Cu, Pb, and Cd on fitness in snails (Helix aspersa). Ecotoxicol Environ Saf 34:59–69

  29. Lindstrom MJ, Bates DM (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46:673–687

  30. Lock K, Janssen CR (2001) Ecotoxicity of mercury to Eisenia fetida, Enchytraeus albidus and Folsonia candida. Biol Fertil Soils 34:219–221

  31. Lucarz A, Gomot L (1985) Influence de la densité de population sur la croissance diamétrale et pondérale de l’escargot Helix aspersa Müller dans différentes conditions d’élevage. J Moll Stud 51:105–115

  32. Ma H, Glenn TC, Jagoe CH, Jones KL, Williams PL (2009) A transgenic strain of the nematode Caenorhabditis elegans as a biomonitor for heavy metal contamination. Environ Toxicol Chem 28:1311–1318

  33. McCarty LS, Mackay D (1993) Enhancing ecotoxicological modeling and assessment: body residues and mode of toxic action. Environ Sci Technol 27:1719–1728

  34. Molina JA, Oyarzun R, Esbrí JM, Higueras P (2006) Mercury accumulation in soils and plants in the Almadén mining district, Spain: one of the most contaminated sites on Earth. Environ Geochem Health 28:487–498

  35. OECD (1984) Test no. 207: earthworm acute toxicity tests. In: Organisation for Economic Co-operation and Development (ed) Guidelines for the testing of chemicals, vol 1., pp 1–9

  36. Pirrone N, Cinnirella S, Feng X, Finkelman R‐B, Friedli H‐R, Leaner J, Mason R, Mukherjee A‐B, Stracher G‐B, Streets D‐G, Telmer K (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10:5951–5964

  37. Pytharopoulou S, Kournoutou GG, Leotsinnidis M, Georgiou CD, Kalpaxis DL (2013) Dysfunctions of the translational machinery in digestive glands of mussels exposed to mercury ions. Aquat Toxicol 134–135:23–33

  38. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  39. Rimmer C, Miller E, McFarland K, Taylor R, Faccio S (2009) Mercury bioaccumulation and trophic transfer in the terrestrial food web of a montane forest. Ecotoxicology 19:697–709

  40. Schüder I, Port G, Bennison J (2004) The behavioural response of slugs and snails to novel molluscicides, irritants and repellents. Pest Manag Sci 60:1171–1177

  41. Son J, Ryoo M, Jung J, Cho K (2007) Effects of cadmium, mercury and lead on the survival and instantaneous rate of increase of Paronychiurus kimi (Lee) (Collembola). Appl Soil Ecol 35:404–411

  42. Streets DG, Devane MK, Lu Z, Bond TC, Sunderland EM, Jacob DJ (2011) All-time releases of mercury to the atmosphere from human activities. Environ Sci Technol 45:10485–10491

  43. Tipping E, Lofts S, Hooper H, Frey B, Spurgeon D, Svendsen C (2010) Critical limits for Hg(II) in soils, derived from chronic toxicity data. Environ Pollut 158:2465–2471

  44. Tsoularis A, Wallace J (2002) Analysis of logistic growth models. Math Biosci 179:21–55

  45. van Straalen NM, Donker MH, Vijver MG, van Gestel CAM (2005) Bioavailability of contaminants estimated from uptake rates into soil invertebrates. Environ Pollut 136:409–417

  46. Zhu J, Yang D, Fu R, Wang W, Guo X, Yao H (2012) Hormetic effects of mercury on survival of Eisenia fetida (Oligochaeta). Civil Engineering and Urban Planning 2012:299–307

Download references

Acknowledgments

We thank B. Pauget for the fruitful discussions about the results and the four anonymous reviewers for valuable comments on the paper. This work was supported by grants from the Conseil Régional of Franche-Comté.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Correspondence to Frédéric Gimbert.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gimbert, F., Perrier, F., Caire, A. et al. Mercury toxicity to terrestrial snails in a partial life cycle experiment. Environ Sci Pollut Res 23, 3165–3175 (2016). https://doi.org/10.1007/s11356-015-5632-y

Download citation

Keywords

  • Cantareus aspersus
  • Growth
  • Reproduction
  • Maturation
  • Fecundity
  • Accumulation
  • Chronic exposure