Environmental Science and Pollution Research

, Volume 23, Issue 4, pp 3427–3435 | Cite as

Use of fallout radionuclides (7Be, 210Pb) to estimate resuspension of Escherichia coli from streambed sediments during floods in a tropical montane catchment

  • Olivier RibolziEmail author
  • Olivier Evrard
  • Sylvain Huon
  • Emma Rochelle-Newall
  • Thierry Henri-des-Tureaux
  • Norbert Silvera
  • Chanthamousone Thammahacksac
  • Oloth Sengtaheuanghoung
Research Article


Consumption of water polluted by faecal contaminants is responsible for 2 million deaths annually, most of which occur in developing countries without adequate sanitation. In tropical aquatic systems, streambeds can be reservoirs of persistent pathogenic bacteria and high rainfall can lead to contaminated soils entering streams and to the resuspension of sediment-bound microbes in the streambed. Here, we present a novel method using fallout radionuclides (7Be and 210Pbxs) to estimate the proportions of Escherichia coli, an indicator of faecal contamination, associated with recently eroded soil particles and with the resuspension of streambed sediments. We show that using these radionuclides and hydrograph separations we are able to characterize the proportion of particles originating from highly contaminated soils and that from the resuspension of particle-attached bacteria within the streambed. We also found that although overland flow represented just over one tenth of the total flood volume, it was responsible for more than two thirds of the downstream transfer of E. coli. We propose that data obtained using this method can be used to understand the dynamics of faecal indicator bacteria (FIB) in streams thereby providing information for adapted management plans that reduce the health risks to local populations.
Graphical Abstract

Graphical abstract showing (1) the main water flow processes (i.e. overland flow, groundwater return flow, blue arrows) and sediment flow components (i.e. resuspension and soil erosion, black arrows) during floods in the Houay Pano catchment; (2) the general principle of the method using fallout radionuclide markers (i.e. 7Be and 210Pbxs) to estimate E. coli load from the two main sources (i.e. streambed resuspension vs soil surface washoff); and 3) the main results obtained during the 15 May 2012 storm event (i.e. relative percentage contribution of each process to the total streamflow, values in parentheses)


FIB South East Asia Hydrological modelling Erosion Land use Overland flow Beryllium-7 Lead-210 



The authors would like to thank the Lao Department of Agriculture Land Management (DALAM) and the MSEC project (Multi-Scale Environment Changes) for their support. They are also grateful to Keo Oudone Latsachack, Bounsamai Soulileuth, Marie Arnoux and Elian Gourdin for their help during field and laboratory work. This work was financed by the French Centre National de la Recherche Scientifique EC2CO/BIOHEFECT program (Belcrue and Belkong projects) as well as by the French National Research Agency (TecItEasy project; ANR-13-AGRO-0007).


  1. Bricquet J-P, Boonsaner A, Phommassack T, Toan TD (2003) Statistical analysis of long series rainfall data: a regional study in Southeast Asia. In: IWMI (Hrsg.), IWMI Seminar on Scientific Cooperation. IWMI South East Asia. Kasetsart University, Bangkok, Thailand, pp 83–89Google Scholar
  2. Byappanahalli MN, Fujioka RS (1998) Evidence that tropical soil environment can support the growth of Escherichia coli. Water Sci Technol 38:171–174CrossRefGoogle Scholar
  3. Byappanahalli MN, Nevers MB, Korajkic A, Staley ZR, Harwood VJ (2012) Enterococci in the environment. Microbiol Mol Biol Rev 76:685–706CrossRefGoogle Scholar
  4. Causse J, Billen G, Garnier J, Henri-des-Tureaux T, Olasa X, Thammahacksa C, Latsachak KO, Soulileuth B, Sengtaheuanghoung O, Rochelle-Newall E, Ribolzi O (2015) Field and modelling studies of Escherichia coli loads in tropical streams of montane agro-ecosystems. J Hydro Environ Res. doi:  10.1016/j.jher.2015.03.003
  5. Chan YM, Thoe W, Lee JHW (2015) Field and laboratory studies of Escherichia coli decay rate in subtropical coastal water. J Hydro Environ Res 9:1–14CrossRefGoogle Scholar
  6. Cho KH, Pachepsky YA, Kim JH, Kim JW, Park MH (2012) The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA. Water Res 46:4750–4760CrossRefGoogle Scholar
  7. Collins RU, Neal C (1998) The hydrochemical impacts of terraced agriculture, Nepal. Sci Total Environ 212:233–243CrossRefGoogle Scholar
  8. Ekklesia E, Shanahan P, Chua LHC, Eikaas HS (2015) Temporal variation of faecal indicator bacteria in tropical urban storm drains. Water Res 68:171–181CrossRefGoogle Scholar
  9. Evrard O, Nemery J, Gratiot N, Duvert C, Ayrault S, Lefevre I, Poulenard J, Prat C, Bonte P, Esteves M (2010) Sediment dynamics during the rainy season in tropical highland catchments of central Mexico using fallout radionuclides. Geomorphology 124:42–54CrossRefGoogle Scholar
  10. Garzio-Hadzick A, Shelton DR, Hill RL, Pachepsky YA, Guber AK, Rowland R (2010) Survival of manure-borne E. coil in streambed sediment: effects of temperature and sediment properties. Water Res 44:2753–2762CrossRefGoogle Scholar
  11. Genereux DP, Hooper RP (1998) Oxygen and hydrogen isotopes in rainfall-runoff-studies. In: McDonnell JJ, Kendall C (eds) Isotopes tracers in catchment hydrology. Elsevier Science B.V, Amsterdam, pp 319–346CrossRefGoogle Scholar
  12. Goto DK, Yan T (2011) Effects of land uses on fecal indicator bacteria in the water and soil of a tropical watershed. Microbes Environ 26:254–260CrossRefGoogle Scholar
  13. Gourdin E, Evrard O, Huon S, Lefèvre I, Ribolzi O, Reyss J-L, Sengtaheuanghoung O, Ayrault S (2014a) Suspended sediment dynamics in a Southeast Asian mountainous catchment: combining river monitoring and fallout radionuclide tracers. Journal of Hydrology 519, Part B: 1811–1823Google Scholar
  14. Gourdin E, Evrard O, Huon S, Reyss JL, Ribolzi O, Bariac T, Sengtaheuanghoung O, Ayrault S (2014b) Spatial and temporal variability of Be-7 and Pb-210 wet deposition during four successive monsoon storms in a catchment of northern Laos. J Environ Radioact 136:195–205CrossRefGoogle Scholar
  15. Gourdin E, Huon S, Evrard O, Ribolzi O, Bariac T, Sengtaheuanghoung O, Ayrault S (2015) Sources and export of particle-borne organic matter during a monsoon flood in a catchment of northern Laos. Biogeosciences 12:1073–1089CrossRefGoogle Scholar
  16. Guiteras R, Levinsohn J, Mobarak AM (2015) Encouraging sanitation investment in the developing world: a cluster-randomized trial. Science: aaa0491Google Scholar
  17. Hrdinka T, Novický O, Hanslík E, Rieder M (2012) Possible impacts of floods and droughts on water quality. J Hydro Environ Res 6:145–150CrossRefGoogle Scholar
  18. Huon S, de Rouw A, Bonté P, Robain H, Valentin C, Lefèvre I, Girardin C, Le Troquer Y, Podwojewski P, Sengtaheuanghoung O (2013) Long-term soil carbon loss and accumulation in a catchment following the conversion of forest to arable land in northern Laos. Agric Ecosyst Environ 169:43–57CrossRefGoogle Scholar
  19. Ishii S, Sadowsky MJ (2008) Escherichia coli in the environment: implications for water quality and human health. Microbes Environ 23:101–108CrossRefGoogle Scholar
  20. Kim JW, Pachepsky YA, Shelton DR, Coppock C (2010) Effect of streambed bacteria release on E. coli concentrations: monitoring and modeling with the modified SWAT. Ecol Model 221:1592–1604CrossRefGoogle Scholar
  21. Kirchner JW (2003) A double paradox in catchment hydrology and geochemistry. Hydrol Process 17:871–874CrossRefGoogle Scholar
  22. Lemee R, Rochelle-Newall E, Van Wambeke F, Pizay MD, Rinaldi P, Gattuso JP (2002) Seasonal variation of bacterial production, respiration and growth efficiency in the open NW Mediterranean Sea. Aquat Microb Ecol 29:227–237CrossRefGoogle Scholar
  23. Matisoff G, Wilson CG, Whiting PJ (2005) The 7Be/210Pbxs ratio as an indicator of suspended sediment age or fraction new sediment in suspension. Earth Surf Process Landf 30:1191–1201CrossRefGoogle Scholar
  24. Muirhead RW, Davies-Colley RJ, Donnison AM, Nagels JW (2004) Faecal bacterial yields in artificial flood events: quantifying in-stream stores. Water Res 38:1215–1224CrossRefGoogle Scholar
  25. Nguyen TMH, Le TPQ, Garnier J, Janeau J-L, Rochelle-Newall E (2015) Variability of faecal indicator bacteria (FIB) and die-off rates in the Red River, North Vietnam. J Hydro Environ Res (in press)Google Scholar
  26. Oliver DM, Clegg CD, Heathwaite AL, Haygarth PM (2007) Preferential attachment of Escherichia coli to different particle size fractions of an agricultural grassland soil. Water Air Soil Pollut 185:369–375CrossRefGoogle Scholar
  27. Pachepsky YA, Garzio-Hadzick A, Shelton DR, Hadzick ZZ, Hill RL (2011) Survival of E. coli O157:H12 in creek sediments after inoculation and re-inoculation. Int J Environ Pollut 46:234–245CrossRefGoogle Scholar
  28. Pachepsky YA, Shelton DR (2011) Escherichia coli and fecal coliforms in freshwater and estuarine sediments. Crit Rev Environ Sci Technol 41:1067–1110CrossRefGoogle Scholar
  29. Pandey PK, Soupir ML, Haddad M, Rothwell JJ (2012) Assessing the impacts of watershed indexes and precipitation on spatial in-stream E. coli concentrations. Ecol Indic 23:641–652CrossRefGoogle Scholar
  30. Patin J, Mouche E, Ribolzi O, Chaplot V, Sengtahevanghoung O, Latsachak KO, Soulileuth B, Valentin C (2012) Analysis of runoff production at the plot scale during a long-term survey of a small agricultural catchment in Lao PDR. J Hydrol 426:79–92CrossRefGoogle Scholar
  31. Ribolzi O, Moussa R, Gaudu JC, Valles V, Voltz M (1997) Stream water regime change at autumn recharge on a Mediterranean farmed catchment using a natural tracer. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule a-Sciences De La Terre Et Des Planetes 324:985–992Google Scholar
  32. Ribolzi O, Andrieux P, Valles V, Bouzigues R, Bariac T, Voltz M (2000) Contribution of groundwater and overland flows to storm flow generation in a cultivated Mediterranean catchment. Quantification by natural chemical tracing. J Hydrol 233:241–257CrossRefGoogle Scholar
  33. Ribolzi O, Cuny J, Sengsoulichanh P, Mousques C, Soulileuth B, Pierret A, Huon S, Sengtaheuanghoung O (2011a) Land use and water quality along a Mekong tributary in Northern Lao PDR. Environ Manag 47:291–302CrossRefGoogle Scholar
  34. Ribolzi O, Patin J, Bresson LM, Latsachack KO, Mouche E, Sengtaheuanghoung O, Silvera N, Thiebaux JP, Valentin C (2011b) Impact of slope gradient on soil surface features and infiltration on steep slopes in northern Laos. Geomorphology 127:53–63CrossRefGoogle Scholar
  35. Rochelle-Newall EJ, Nguyen TMH, Le TPQ, Sengtaheuanghoung O, Ribolzi O (2015) A short review of faecal indicator bacteria in tropical aquatic ecosystems: knowledge gaps and future directions. Front Microbiol 6:308CrossRefGoogle Scholar
  36. Saqalli M, Jourdren M, Maestripieri N, Guillerme S, Maire E, Soulileuth B, Latsachach K, Sounyafong P, Tammahuxsa L, Sengtaheuanghoung O, Ribolzi O, Becerra S (2015) Backward waters, modern waters: perception-based regional mapping territory uses and water-related sanitary stakes in Luang Phabang area (Lao PDR). Appl Geogr 60:184–193CrossRefGoogle Scholar
  37. Soil Survey Staff (1999) Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys. USDA-NRCSGoogle Scholar
  38. Stumpf CH, Piehler MF, Thompson S, Noble RT (2010) Loading of fecal indicator bacteria in North Carolina tidal creek headwaters: hydrographic patterns and terrestrial runoff relationships. Water Res 44:4704–4715CrossRefGoogle Scholar
  39. Sturma A, Becerra S (2012) L’assainissement à Mayotte à quel prix ? Entre vulnérabilité institutionnelle et sociale. In: Raynaud L, Poirot-Delpech S (eds) Par-delà le local et le global: Pour une socio-anthropologie de l’environnement. L’Harmattan, Paris, pp 207–223Google Scholar
  40. Suter E, Juhl A, O’Mullan G (2011) Particle association of Enterococcus and total bacteria in the Lower Hudson River Estuary, USA. J Water Resour Prot 3:715–725CrossRefGoogle Scholar
  41. Taylor A, Blake WH, Couldrick L, Keith-Roach MJ (2012) Sorption behaviour of beryllium-7 and implications for its use as a sediment tracer. Geoderma 187–188:16–23CrossRefGoogle Scholar
  42. Taylor A, Blake WH, Smith HG, Mabit L, Keith-Roach MJ (2013) Assumptions and challenges in the use of fallout beryllium-7 as a soil and sediment tracer in river basins. Earth Sci Rev 126:85–95CrossRefGoogle Scholar
  43. Unanue M, Ayo B, Azúa I, Barcina I, Iriberri J (1992) Temporal variability of attached and free-living bacteria in coastal waters. Microb Ecol 23:27–39CrossRefGoogle Scholar
  44. Vigiak O, Ribolzi O, Pierret A, Sengtaheuanghoung O, Valentin C (2008) Trapping efficiencies of cultivated and natural riparian vegetation of northern Laos. J Environ Qual 37:889–897CrossRefGoogle Scholar
  45. WHO (2012) World Health Organisation global data repository, World Health Organisation,
  46. World Bank (2009) Economic impacts of sanitation in Lao PDRGoogle Scholar
  47. Yakirevich A, Pachepsky YA, Guber AK, Gish TJ, Shelton DR, Cho KH (2013) Modeling transport of Escherichia coli in a creek during and after artificial high-flow events: three-year study and analysis. Water Res 47:2676–2688CrossRefGoogle Scholar
  48. Ziegler AD, Sutherland RA, Giambelluca TW (2000) Partitioning total erosion on unpaved roads into splash and hydraulic components: the roles of interstorm surface preparation and dynamic erodibility. Water Resour Res 36:2787–2791CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Olivier Ribolzi
    • 1
    Email author
  • Olivier Evrard
    • 2
  • Sylvain Huon
    • 3
  • Emma Rochelle-Newall
    • 4
  • Thierry Henri-des-Tureaux
    • 4
  • Norbert Silvera
    • 5
  • Chanthamousone Thammahacksac
    • 5
  • Oloth Sengtaheuanghoung
    • 6
  1. 1.Géosciences Environnement Toulouse (GET), UMR 5563 (CNRS-UPS-IRD)ToulouseFrance
  2. 2.Laboratoire des Sciences du Climat et de l’Environnement (LSCE), UMR 8212 (CEA-CNRS-UVSQ/IPSL)Gif-sur-Yvette cedexFrance
  3. 3.Université Pierre et Marie Curie (UPMC), UMR 7618 iEES (UPMC-CNRS-IRD-INRA-UDD-UPEC)Paris cedexFrance
  4. 4.Institut de Recherche pour le Développement (IRD)iEES-Paris, UMR 242Bondy cedexFrance
  5. 5.IRD, National Agriculture and Forestry Research Institute (NAFRI)VientianeLao People’s Democratic Republic
  6. 6.Department of Agricultural Land Management (DALaM)VientianeLao People’s Democratic Republic

Personalised recommendations