Environmental Science and Pollution Research

, Volume 23, Issue 4, pp 3747–3757 | Cite as

Airborne microorganisms cultivable on naturally ventilated document repositories of the National Archive of Cuba

  • Sofía Borrego
  • Ivette Perdomo
Research Article


The quality of the indoor air can provide very useful information for the artwork conservation. The aim of the study was to evaluate the microbial concentration inside six document repositories of the National Archive of the Republic of Cuba in two months of 1 year. The repositories are large, high, and have a natural cross-ventilation system. The microbial sampling was done in July 2010 (summer or rainy month) and February 2011 (winter or dry month) using the SAS Super 100 biocollector at 100 L/min. An appropriate selective culture media were used to isolate fungi and bacteria. A high total microbial concentration on the north side of the building in two studied months was observed. The fungal concentrations were significantly higher in July 2010 in all repositories, while the bacterial concentrations were significantly higher mostly in February 2011 only in repositories located on the first and second floor of the building. Eight fungal genera in the indoor air of all environments were isolated. Regardless of the side of the analyzed building, Penicillium, Aspergillus, and Cladosporium were the predominant genera. Aspergillus flavus and Aspergillus niger were the species isolated in almost all of the analyzed repositories in the studied months. Gram-positive bacteria prevailed among bacterial groups isolated from indoor air repositories, and some percentages corresponded to the genera Bacillus and Streptomyces. In Cuba, the temperature and relative humidity are high during the whole year but the natural ventilation plays an important role in retarding microbial growth on materials.


Archive Aspergillus Bacteria Gram-positive Fungi Indoor environment Microbial indoor air quality Natural cross-ventilation system 



The authors acknowledge the financial support received from the Assistance Program for Archives of Latin America of Spain, ADAI (Projects 134/2010 and 064/2012).


  1. Barnett HL, Hunter BB (2003) Illustrated genera of imperfect fungi, 4th edn. Burgués, MinneapolisGoogle Scholar
  2. Baxter CS, Wey HE, Burg WE (1981) Prospective analysis of the potential risk associated with inhalation of aflatoxin-contaminated grain dusts. Food Cosmet Toxicol 19:763–769Google Scholar
  3. Borrego S, Molina A (2014) Behavior of the aeromicrobiote in two repositories of the National Archive of the Republic of Cuba during seven years of study. Augmdomus 6:1–24 (in Spanish) Google Scholar
  4. Borrego S, Perdomo I (2012) Aerobiological investigations inside repositories of the National Archive of the Republic of Cuba. Aerobiologia 28(3):303–316CrossRefGoogle Scholar
  5. Borrego S, Perdomo I (2014) Characterization of air mycobiota in two repositories of the National Archives of the Republic of Cuba. Rev Iberoam Micol 31(3):182–187 (in Spanish) CrossRefGoogle Scholar
  6. Borrego S, Guiamet P, Gómez de Saravia S, Battistoni P, Garcia M, Lavin P, Perdomo I (2010) The quality of air at archives and the biodeterioration of photographs. Int Biodeter Biodegr 64(2):139–145CrossRefGoogle Scholar
  7. Borrego S, Lavin P, Perdomo I, Gómez de Saravia S, Guiamet P (2012) Determination of indoor air quality in archives and biodeterioration of the documentary heritage. ISRN Microbiol 2012:10. doi: 10.5402/2012/680598 Google Scholar
  8. Canhoto O, Pinzari F, Fanelli C, Magan N (2004) Application of electronic hose technology for the detection of fungal contamination in library paper. Int Biodeter Biodegr 54:300–309Google Scholar
  9. Cappitelli F, Sorlini C (2010) Paper and manuscripts. In: Mitchell R, McNamara CJ (eds) Cultural heritage microbiology: studies in conservation science. ASM, Washington, DC, pp 45–59Google Scholar
  10. Cappitelli F, Fermo P, Vecchi R, Piazzalunga A, Valli G, Zanardini E, Sorlini C (2009) Chemical-physical and microbiological measurements for indoor air quality assessment at the Ca’ Granada Historical Archive, Milan (Italy). Water Air Soil Pollut 201:109–120CrossRefGoogle Scholar
  11. De Hoog GS, Guarro G, Gené J, Figueras MJ (2000) Atlas of clinical fungi, 2nd edn. Universidad Rovira I Virgili Reus, EspañaGoogle Scholar
  12. De la Rosa MC, Mosso MA, Ullán C (2002) El aire: hábitat y medio de transmisión de microorganismos. Observatorio Med 5:375–402Google Scholar
  13. Esquivel PP, Mangiaterra M, Giusiano G, Sosa MA (2003) Microhongos anemófilos en ambientes abiertos de dos ciudades del nordeste argentino. Bol Micol 18:21–28Google Scholar
  14. Fekadu S, Melaku A (2014) Microbiological quality of indoor air in university libraries. Asian Pac J Trop Biomed 4(Suppl 1):S312–S317Google Scholar
  15. Grbić ML, Stupar M, Vukojević J, Maričić I, Bungur N (2013) Molds in museum environments: biodeterioration of art photographs and wooden sculptures. Arch Biol Sci 65(3):955–962CrossRefGoogle Scholar
  16. Green CF, Scarpino PV, Gibbs SG (2003) Assessment and modeling of indoor fungal and bacterial bioaerosol concentrations. Aerobiologia 19:159–169CrossRefGoogle Scholar
  17. Guiamet PS, Borrego S, Lavin P, Perdomo I, Gómez de Saravia S (2011) Biofouling and biodeterioration in material stored at Historical Archive of the Museum of La Plata, Argentine and at the National Archive of the Republic of Cuba. Colloid Surface B 85(2):229–234CrossRefGoogle Scholar
  18. Harkawy A, Górny RL, Ogierman L, Wlazło A, Ławniczek-Wałczyk A, Niesler A (2011) Bioaerosol assessment in naturally ventilated historical library building with restricted personnel access. Ann Agric Environ Med 18(2):323–329Google Scholar
  19. Holmberg K (1987) Indoor mould exposure and health effects. In: Seifert B, Esdom H, Fischer M, Rüden H, Wegner J (eds) 4th international conference of indoor air quality and climate. Institute of Water, Soil, and Air Hygiene, Berlin, pp. 637–642Google Scholar
  20. Holt JG (ed) (1984) Bergey’s Manual of Systematic Bacteriology. Williams & Wilkins, BaltimoreGoogle Scholar
  21. Klich MA, Pitt JI (1994) A laboratory guide to the common Aspergillus species and their teleomorphs. Division of Food Processing, Commonwealth Scientific and Industrial Research Organization, North RydeGoogle Scholar
  22. Kołwzan B, Adamiak W, Grabas K, Pawełczyk A (2006) Introduction to environmental microbiology. Oficyna Wydawnicza Politechniki Wrocławskiej, WrocławGoogle Scholar
  23. Lavin P, Gómez de Saravia SG, Guiamet PS (2014) An environmental assessment of biodeterioration in document repositories. Biofouling 30(5):561–569CrossRefGoogle Scholar
  24. Lignell U (2008) Characterization of microorganisms in indoor environments. Publications of the National Public Health Institute, HelsinkiGoogle Scholar
  25. Mandrioli P, Caneva G, Sabbioni C (2003) Cultural heritage and aerobiology. Methods and measurement techniques for biodeterioration monitoring. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  26. Mesquita N, Portugal A, Videira S, Rodríguez-Echeverría S, Bandeira AML, Santos MJA, Fritas H (2009) Fungal diversity in ancient documents. A case study on archive of the University of Coimbra. Int Biodeter Biodegr 63:626–629CrossRefGoogle Scholar
  27. Micheluz A, Manente S, Tigini V, Prigione V, Pinzari F, Ravagnan G, Varese GC (2015) The extreme environment of a library: xerophilic fungi inhabiting indoor niches. Int Biodeter Biodegr 99:1–7CrossRefGoogle Scholar
  28. Molina A, Borrego S (2014) Análisis de la micobiota existente en el ambiente interior de la Mapoteca del Archivo Nacional de la República de Cuba. Bol Micol 29(1):2–17 (in Spanish) Google Scholar
  29. Nevalainen A, Morawaska L eds (2009) Biological agents in indoor environments. Assessment of health risks. Work conducted by a WHO Expert Group between 2000–2003, Queensland University of Technology, Australia. Accessed 6 September 2010
  30. Niesler A, Górny RL, Wlazło A, Łudzeń-Izbińska B, Ławniczek-Wałczyk A, Gołofit-Szymczak M, Meres Z, Kasznia-Kocot J, Harkawy A, Lis DO, Anczyk E (2010) Microbial contamination of storerooms at the Auschwitz-Birkenau Museum. Aerobiologia 26:125–133CrossRefGoogle Scholar
  31. Nugari MP, Roccardi A (2001) Aerobiological investigations applied to the conservation of cultural heritage. Aerobiologia 17:215–223CrossRefGoogle Scholar
  32. Nunes I, Mesquita N, Cabo Verde S, Bandeira AML, Carolino AM, Portugal A, Botelho ML (2013) Characterization of an airborne microbial community: a case study in the archive of the University of Coimbra, Portugal. Int Biodeter Biodegr 79:36–41CrossRefGoogle Scholar
  33. Pasenen A, Kasanen J, Rautiala S, Ikaheimo M, Rantamaki J, Kaariainen H, Kallioski P (2000) Fungal growth and survival in building materials under fluctuating moisture and temperature conditions. Int Biodeter Biodegr 46:117–127CrossRefGoogle Scholar
  34. Pasquarella C, Saccani E, Sansebastiano GE, Ugolotti M, Pasquariello G, Albertini R (2012) Proposal for a biological environmental monitoring approach to be used in libraries and archives. Ann Agric Environ Med 19(2):209–212Google Scholar
  35. Pasquarella C, Sansebastiano GE, Saccani E, Ugolotti M, Mariotti F, Boccuni C, Signorelli C, Schianchi LF, Alessandrini C, Albertini R (2011) Proposal for an integrated approach to microbial environmental monitoring in cultural heritage: experience at the Correggio exhibition in Parma. Aerobiologia 27:203–211Google Scholar
  36. Pinheiro AC, Macedo MF, Jurado V, Saiz-Jimenez C, Viegas C, Brandão J, Rosado L (2011) Mould and yeast identification in archival settings: preliminary results on the use of traditional methods and molecular biology options in Portuguese archives. Int Biodeter Biodegr 65:619–627CrossRefGoogle Scholar
  37. Pinzari F, Montanari M, Michaelsen A, Piñar G (2010) Analytical protocols for the assessment of biological damage in historical documents. Coalition 19:6–13Google Scholar
  38. Radler de Aquino F, De Góes LF (2000) Guidelines for indoor air quality in offices in Brazil. Proceedings of Health Buildings 4:549–553Google Scholar
  39. Rakotonirainy MS, Heude E, Lavédrine B (2007) Isolation and attempts of biomolecular characterization of fungal strains associated to foxing on a 19th century book. J Cult Herit 8:126–133CrossRefGoogle Scholar
  40. Rintala H, Pitkäranta M, Toivola M, Paulin L, Nevalainen A (2008) Diversity and seasonal dynamics of bacterial community in indoor environment. BMC Microbiol 8(1):56. doi: 10.1186/1471-2180-8-56 CrossRefGoogle Scholar
  41. Rojas TI, Martínez E, Gómez Y, Alvarado Y (2002) Airborne spores of Aspergillus species in cultural institutions at Havana University. Grana 41:190–193CrossRefGoogle Scholar
  42. Rojas TI, Martínez E, Aira MJ, Almaguer M (2008) Aeromicota de ambientes internos: comparación de métodos de muestreo. Bol Micol 23:67–73Google Scholar
  43. Rojas TI, Aira MJ, Batista A, Cruz IL, Gonzáles S (2012) Fungal biodeterioration in historic buildings of Havana (Cuba). Grana 51:44–51CrossRefGoogle Scholar
  44. Roussell S, Reboux G, Millon L, Parchas MD, Boudih S, Skana F, Delaforge M, Rakotonirainy MS (2012) Microbiological evaluation of ten French archives and link to occupational symptoms. Indoor Air 22(6):514–22CrossRefGoogle Scholar
  45. Ruga L, Orlandi F, Romano B, Fornaciari M (2015) The assessment of fungal bioaerosols in the crypt of St. Peter in Perugia (Italy). Int Biodeter Biodegr 98:121–130CrossRefGoogle Scholar
  46. Sabariego S, Díaz de la Guardia C, Sánchez FA (2004) Estudio aerobiológico de los conidios de Alternaria y Cladosporium en la atmósfera de la ciudad de Almería (SE de España). Revista Iberoamerica de Micología 21:121–127Google Scholar
  47. Saiz-Jimenez C, Gonzalez JM (2007) Aerobiology and cultural heritage: some reflections and future challenges. Aerobiologia 23:89–90CrossRefGoogle Scholar
  48. Skóra J, Gutarowska B, Pielech-Przybylska K, Stępień L, Pietrzak K, Piotrowska M, Pietrowski P (2015) Assessment of microbiological contamination in the work environments of museums, archives and libraries. Aerobiologia. doi: 10.1007/s10453-015-9372-8Google Scholar
  49. Smith G (1980) Ecology and field biology, 2nd edn. Harper & Row, New YorkGoogle Scholar
  50. Trovão J, Mesquita N, Paiva DS, Paiva de Carvalho H, Avelar L, Portugal A (2013) Can arthropods act as vectors of fungal dispersion in heritage collections? A case study on the archive of the University of Coimbra, Portugal. Int Biodeter Biodegr 79:49–55CrossRefGoogle Scholar
  51. Valentín N (2010) Microorganisms in museum collections. Coalition 19:2–5Google Scholar
  52. Zielińska-Jankiewicz K, Kozajda A, Piotrowska M, Szadkowska-Stańczyk I (2008) Microbiological contamination with moulds in work environment in libraries and archive storage facilities. Ann Agric Environ Med 15:71–78Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Laboratory of Preventive ConservationNational Archive of the Republic of CubaHavanaCuba

Personalised recommendations