Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 7, pp 6102–6118 | Cite as

Organic and inorganic components of aerosols over the central Himalayas: winter and summer variations in stable carbon and nitrogen isotopic composition

  • Prashant HegdeEmail author
  • Kimitaka Kawamura
  • H. Joshi
  • M. Naja
Contamination related to anthropic activities. Characterization and remediation

Abstract

The aerosol samples were collected from a high elevation mountain site, Nainital, in India (1958 m asl) during September 2006 to June 2007 and were analyzed for water-soluble inorganic species, total carbon, nitrogen, and their isotopic composition (δ13C and δ15N, respectively). The chemical and isotopic composition of aerosols revealed significant anthropogenic influence over this remote free-troposphere site. The amount of total carbon and nitrogen and their isotopic composition suggest a considerable contribution of biomass burning to the aerosols during winter. On the other hand, fossil fuel combustion sources are found to be dominant during summer. The carbon aerosol in winter is characterized by greater isotope ratios (av. −24.0 ‰), mostly originated from biomass burning of C4 plants. On the contrary, the aerosols in summer showed smaller δ13C values (−26.0 ‰), indicating that they are originated from vascular plants (mostly of C3 plants). The secondary ions (i.e., SO4 2−, NH4 +, and NO3 ) were abundant due to the atmospheric reactions during long-range transport in both seasons. The water-soluble organic and inorganic compositions revealed that they are aged in winter but comparatively fresh in summer. This study validates that the pollutants generated from far distant sources could reach high altitudes over the Himalayan region under favorable meteorological conditions.

Keywords

Himalayan aerosols Biomass burning Fossil fuel combustion Long-range transport Pollution assessment 

Notes

Acknowledgments

We appreciate the financial support of a JSPS fellowship to PH. C. M. Pavuluri is acknowledged for his valuable discussion and comments. We thank the NOAA Air Resources Laboratory for the provision of the HYSPLIT transport and dispersion model and READY website (http://www.arl.noaa.gov/ready.html) used in this publication.

References

  1. Agarwal S, Aggarwal SG, Okuzawa K, Kawamura K (2010) Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols. Atmos Chem Phys 10:5839–5858. doi: 10.5194/acp-10-5839-2010 CrossRefGoogle Scholar
  2. Aggarwal SG (2010) Recent developments in aerosol measurement techniques and the metrological issues, MAPAN. J Metrol Soc India 25(3):163–187Google Scholar
  3. Aggarwal SG, Kawamura K (2008) Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: implications for photochemical aging during long-range atmospheric transport. J Geophys Res 113, D14301. doi: 10.1029/2007JD009365 CrossRefGoogle Scholar
  4. Aggarwal SG, Kawamura K (2009) Carbonaceous and inorganic composition in long-range transported aerosols over northern Japan: implication for aging of water-soluble organic fraction. Atmos Environ 43:2532–2540CrossRefGoogle Scholar
  5. Aggarwal et al (2013) Traceability issue in PM2.5 and PM10 measurements, MAPAN. J Metrol Soc India 28(3):153–166. doi: 10.1007/s12647-013-0073-x Google Scholar
  6. Agnihotri R et al (2011) Stable carbon and nitrogen isotopic composition of bulk aerosols over India and northern Indian Ocean. Atmos Environ 45:2828–2835CrossRefGoogle Scholar
  7. Andreae MO et al (1990) The atmospheric sulfur cycle over the amazon basin: 2. Wet season. J Geophys Res 95:16813–16824. doi: 10.1029/JD095iD10p16813 CrossRefGoogle Scholar
  8. Arimoto R et al (2004) Chemical composition of atmospheric aerosols from Zhenbeiitai, China, and Gosan, South Korea, during ACE-Asia. J Geophys Res 109:D19S04. doi: 10.1029/2003JD004323 CrossRefGoogle Scholar
  9. Ayers GP, Gras JL (1991) Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air. Nature 353:834–835CrossRefGoogle Scholar
  10. Barros AP, Kim G, Williams E, Nesbitt W (2004) Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Nat Hazards Earth Syst Sci 4:29–51CrossRefGoogle Scholar
  11. Beegum SN et al (2009) Spatial distribution of aerosol black carbon over India during pre-monsoon season. Atmos Environ 43:1071–1078CrossRefGoogle Scholar
  12. Bendle JA, Kawamura K, Yamazaki K (2006) Seasonal changes in stable carbon isotopic composition of n-alkanes in the marine aerosols from the western North Pacific: implications for the source and atmospheric transport. Geochim Cosmochim Acta 70:13–26CrossRefGoogle Scholar
  13. Bendle J, Kawamura K, Yamazaki K, Niwai T (2007) Latitudinal distribution of terrestrial lipid biomarkers and nalkane compound-specific stable carbon isotope ratios in the atmosphere over the western Pacific and Southern Ocean. Geochim Cosmochim Acta 71:5934–5955CrossRefGoogle Scholar
  14. Brasseur GP, Orlando JJ, Tyndall GS (1999) Atmospheric chemistry and global change. Oxford Univ, Press, New York, 654 ppGoogle Scholar
  15. Brasseur G, Prinn RG, Pszenny AAP (eds) (2003) Atmospheric chemistry in a changing world: an integration and synthesis of a decade of tropospheric chemistry research. Global change: the IGBP series. Springer, Berlin, 300 ppGoogle Scholar
  16. Cachier H, Buat‐Ménard P, Frontugne M (1985) Source terms and source strengths of the carbonaceous aerosol in the tropics. J Atmos Chem 3(4):469–489. doi: 10.1007/BF00053872
  17. Cachier H, Buat-Menard MP, Fontugne M, Chesselet R (1986) Long-range transport of continentally-derived particulate carbon in the marine atmosphere: evidence from stable carbon isotope studies. Tellus Ser B Chem Phys Meteorol 38:161–177CrossRefGoogle Scholar
  18. Carrillo JH, Hastings MG, Sigman DM, Huebert BJ (2002) Atmospheric deposition of inorganic and organic nitrogen and base cations in Hawaii. Glob Biogeochem Cycles 16(4):1076. doi: 10.1029/2002GB001892 CrossRefGoogle Scholar
  19. Chebbi A, Carlier P (1996) Carboxylic acids in the troposphere, occurrence, sources, and sinks: a review. Atmos Environ 30:4233–4250CrossRefGoogle Scholar
  20. Clarke AD et al (2002) INDOEX aerosol: a comparison and summary of chemical, microphysical, and optical properties observed from land, ship, and aircraft. J Geophys Res 107(D19):8033. doi: 10.1029/2001JD000572 CrossRefGoogle Scholar
  21. Cong Z et al (2010) Elemental and individual particle analysis of atmospheric aerosols from high Himalayas. Environ Monit Assess 160:323–335CrossRefGoogle Scholar
  22. Cornell S, Rendell A, Jickells T (1995) Atmospheric inputs of dissolved organic nitrogen to the oceans. Nature 376:243–246CrossRefGoogle Scholar
  23. Dumka UC, Krishna Moorthy K, Kumar R, Hegde P, Sagar R, Pant P, Singh N, Babu SS (2010) Characteristics of aerosol black carbon mass concentration over a high altitude location in the central Himalayas from multi-year measurements. Atmos Res 96:510–521. doi: 10.1016/j.atmosres.2009.12.010 CrossRefGoogle Scholar
  24. Falkovich AH, Grabber ER, Schokolnik G, Rudich Y, Maenhaut W, Artaxo P (2005) Low molecular weight organic acids in aerosol particles from Rondonia, Brazil, during the biomass-burning, transition and wet periods. Atmos Chem Phys 5:781–797CrossRefGoogle Scholar
  25. Fisseha R et al (2009) Determination of primary and secondary sources of organic acids and carbonaceous aerosols using stable carbon isotopes. Atmos Environ 43:431–437CrossRefGoogle Scholar
  26. Flanagan LB, Ehleringer JR, Pataki DE (eds) (2005) Stable isotopes and biosphere atmosphere interactions: process and biological controls. Elsevier Academic Press, San Diego, 318 ppGoogle Scholar
  27. Freyer HD (1978) Preliminary 15N studies on atmospheric nitrogenous trace gases. Pure Appl Geophys 116:393–404CrossRefGoogle Scholar
  28. Galloway JN (1995) Acid deposition: perspectives in time and space. Water Air Soil Pollut 85:15–24CrossRefGoogle Scholar
  29. Galloway JN (2000) Nitrogen mobilization in Asia. Nutr Cycl Agroecosyst 57:1–12CrossRefGoogle Scholar
  30. Garg A, Shukla PR, Bhattacharya S, Dadhwal VK (2001) Sub-region (district) and sector level SO2 and NOxemissions for India: assessment of inventories and mitigation flexibility. Atmos Environ 35:703–713CrossRefGoogle Scholar
  31. Gelencser A (2004) Carbonaceous aerosol, Atmospheric and oceanographic sciences library, vol 30. Springer, Netherlands, p 350Google Scholar
  32. Goyal P, Sidhartha (2002) Effect of winds on SO2 and SPM concentration in Delhi. Atmos Environ 36:2925–2930CrossRefGoogle Scholar
  33. Grosjean D (1984) Photooxidation of methyl sulfide, ethyl sulfide, and methanethiol. Environ Sci Technol 18(6):460–468CrossRefGoogle Scholar
  34. Gupta A, Kumar R, Kumari KM, Srivastava SS (2003) Measurement of NO2, HNO3, NH3 and SO2 and related particulate matter at a rural site in Rampur, India. Atmos Environ 37:4837–4846CrossRefGoogle Scholar
  35. Habib G et al (2004) New methodology for estimating biofuel consumption for cooking: atmospheric emissions of black carbon and sulfur dioxide from India, Global Biogeochem. Cycles 18, GB3007. doi: 10.1029/2003GB002157 CrossRefGoogle Scholar
  36. Hagler GSW, Bergin MH, Smith EA, Dibb JE (2007) A summer time series of particulate carbon in the air and snow at Summit, Greenland. J Geophys Res 112, D21309. doi: 10.1029/2007JD008993 CrossRefGoogle Scholar
  37. Hegde P, Kawamura K (2012) Seasonal variations of water-soluble organic carbon, dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls in central Himalayan aerosols. Atmos Chem Phys 12:6645–6665CrossRefGoogle Scholar
  38. Ho KF et al (2006) Variability of organic and elemental carbon, water-soluble organic carbon, and isotopes in Hong Kong. Atmos Chem Phys 6:4569–4576CrossRefGoogle Scholar
  39. Huang L et al (2006) Stable isotope measurements of carbon fractions (OC/EC) in airborne particulate: a new dimension for source characterization and apportionment. Atmos Environ 40:2690–2705CrossRefGoogle Scholar
  40. Huang RJ et al (2014) High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514:218–222Google Scholar
  41. Jung J, Kawamura K (2011) Springtime carbon episodes at Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles. Atmos Chem Phys 11:10911–10928CrossRefGoogle Scholar
  42. Jung J, Tsatsral B, Kim YJ, Kawamura K (2010) Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls. J Geophys Res 115, D22203. doi: 10.1029/2010JD014339 CrossRefGoogle Scholar
  43. Kawamura K et al (2004) Organic and inorganic compositions of marine aerosols from East Asia: seasonal variations of water-soluble dicarboxylic acids, major ions, total carbon and nitrogen, and stable C and N isotopic composition, Geochemical Investigation in Earth and Space Science, A Tribute to Issac R. Kaplan, edited by R. J. Hill. Geol Soc Aust Spec Publ 9:243–265Google Scholar
  44. Kolaltis LN et al (1989) Determination of methanesulfonic acid and non-sea-salt sulfate in single marine aerosol particles. Environ Sci Technol 23:236–240CrossRefGoogle Scholar
  45. Krueger BJ, Grassian VH, Laskin A, Cowin JP (2003) The transformation of solid atmospheric particles into liquid droplets through heterogeneous chemistry: laboratory insight into the processing of calcium containing mineral dust aerosol in the troposphere. Geophys Res Lett 30:1148. doi: 10.1029/2002GL016563 CrossRefGoogle Scholar
  46. Kumar R et al (2011) Influences of the springtime northern Indian biomass burning over the central Himalayas. J Geophys Res 116, D19302. doi: 10.1029/2010JD015509 CrossRefGoogle Scholar
  47. Kundu S, Kawamura K, Lee M (2010) Seasonal variation of the concentrations of nitrogenous species and their nitrogen isotopic ratios in aerosols at Gosan, Jeju Island: implications for atmospheric processing and source changes of aerosols. J Geophys Res 115, D20305. doi: 10.1029/2009JD013323 CrossRefGoogle Scholar
  48. Lacaux JP, Artaxo P (2003) DEBITS: past, present and future. IGAC activities Newsletter 27:1–5Google Scholar
  49. Lamb B, Westberg H, Allwine G, Bamesberger L, Guenther A (1987) Measurement of biogenic sulfur emissions from soils and vegetation: application of dynamic enclosure methods with natusch filter and GC/FPD analysis. J Atmos Chem 5:469–491CrossRefGoogle Scholar
  50. Lee Y-N et al (2003) Air borne measurement of inorganic ionic components of fine aerosol particles using the particle-into liquid sampler coupled to ion chromatography technique during ACE-Asia and TRACE-P. J Geophys Res 108(D23):8646. doi: 10.1029/2002JD003265 CrossRefGoogle Scholar
  51. Li J et al (2011) Chemical composition and size distribution of wintertime aerosols in the atmosphere of Mt. Hua in central China. Atmos Environ 45:1251–1258CrossRefGoogle Scholar
  52. Lim YB, Tan Y, Perri MJ, Seitzinger SP, Turpin BJ (2010) Aqueous chemistry and its role in secondary organic aerosol (SOA) formation. Atmos Chem Phys 10:10521–10539CrossRefGoogle Scholar
  53. López‐Veneroni D (2009) The stable carbon isotope composition of PM2.5 and PM10 in Mexico City Metropolitan area air. Atmos Environ 43:4491–4502CrossRefGoogle Scholar
  54. Lukács H et al (2009) Quantitative assessment of organosulfates in size segregated rural fine aerosol. Atmos Chem Phys 9:231–238CrossRefGoogle Scholar
  55. Malm WC, Sisler JF, Huffman D, Eldred RA, Cahill TA (1994) Spatial and seasonal trends in particle concentration and optical extinction in the United States. J Geophys Res 99:1347–1370Google Scholar
  56. Martinelli LA, Camargo PB, Lara LBLS, Victoria RL, Artaxo P (2002) Stable carbon and nitrogen isotopic composition of bulk aerosol particles in a C4 plant landscape of southeast Brazil. Atmos Environ 36:2427–2432CrossRefGoogle Scholar
  57. Mayol-Bracero OL et al (2002) Water-soluble organic compounds in biomass burning aerosols over Amazonia 2. Apportionment of the chemical composition and importance of the polyacidic fraction. J Geophys Res 107(D20):8091. doi: 10.1029/2001JD000522 CrossRefGoogle Scholar
  58. Mehta B, Venkataraman C, Bhushan M, Tripathi SN (2009) Identification of sources affecting fog formation using receptor modeling approaches and inventory estimates of sectoral emissions. Atmos Environ 43:1288–1295CrossRefGoogle Scholar
  59. Meinardi S, Simpson IJ, Blake NJ, Blake DR, Rowland FS (2003) Dimethyl disulfide (DMDS) and dimethyl sulfide (DMS) emissions from biomass burning in Australia. Geophys Res Lett 30(9):1454. doi: 10.1029/2003GL016967 CrossRefGoogle Scholar
  60. Mikolajczuk A, Berglund M, Geypens B, Taylor P (2008) Carbon and nitrogen isotopic ratio of the water-insoluble fraction in air filter particulate matter, JRC scientific and technical report, No. 45492, pp. 14Google Scholar
  61. Miyazaki Y, Fu PQ, Kawamura K, Mizoguchi Y, Yamanoi K (2012) Seasonal variations of stable carbon isotopic composition and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest. Atmos Chem Phys 12:1367–1376CrossRefGoogle Scholar
  62. Mori I, Nishikawa M, Iwasaka Y (1998) Chemical reaction during the coagulation of ammonium sulphate and mineral particles in the atmosphere. Sci Total Environ 224(1–3):87–91CrossRefGoogle Scholar
  63. Naja M, Akimoto H, Staehelin J (2003) Ozone in background and photochemically aged air over central Europe: analysis of long-term ozonesonde data from Hohenpeissenberg and Payerne. J Geophys Res 108(D2):4063. doi: 10.1029/2002JD002477 CrossRefGoogle Scholar
  64. Narukawa M, Kawamura K, Takeuchi N, Nakajima T (1999) Distribution of dicarboxylic acids and carbon isotopic compositions in aerosols from 1997 Indonesian forest fires. Geophys Res Lett 26:3101–3104. doi: 10.1029/1999GL010810 CrossRefGoogle Scholar
  65. Neff JC, Holland EA, Dentener FJ, McDowell WH, Russell KM (2002) The origin, composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle? Biogeochemistry 57(58):99–136CrossRefGoogle Scholar
  66. Niranjan K, Sreekanth V, Madhavan BL, Krishna Moorthy K (2006) Wintertime aerosol characteristics at a north Indian site Kharagpur in the Indo-Gangetic plains located at the outflow region into Bay of Bengal. J Geophys Res 111, D24209. doi: 10.1029/2006JD007635 CrossRefGoogle Scholar
  67. Novakov T, Corrigan CE (1996) Cloud condensation nucleus activity of the organic component of biomass smoke particles. Geophys Res Lett 23:2141–2144. doi: 10.1029/96GL01971 CrossRefGoogle Scholar
  68. Novakov T, Penner JE (1993) Large contribution of organic aerosols to cloud condensation nuclei concentrations. Nature 365:823–826CrossRefGoogle Scholar
  69. Novakov T, Andreae MO, Gabriel R, Kirchstetter TW, Mayol-Bracero OL, Ramanathan V (2000) Origin of carbonaceous aerosols over the tropical Indian ocean: biomass burning or fossil fuels? Geophys Res Lett 27(24):4061–4064CrossRefGoogle Scholar
  70. Olivier JGJ, Bouwman AF, Van der Hoek KW, Berdowski JJM (1998) Global air emission inventories for anthropogenic sources of NOx, NH3 and N2O in 1990. Environ Pollut 102(S1):135–148CrossRefGoogle Scholar
  71. Ooki A, Uematsu M (2005) Chemical interactions between mineral dust particles and acid gases during Asian dust events. J Geophys Res 110, D03201. doi: 10.1029/2004JD004737 CrossRefGoogle Scholar
  72. Ortiz R et al (2008) Climate change: can wheat beat the heat? Agric Ecosyst Environ 126:46–58CrossRefGoogle Scholar
  73. Pant P et al (2006) Aerosol characteristics at a high-altitude location in central Himalayas: optical properties and radiative forcing. J Geophys Res 111, D17206. doi: 10.1029/2005JD006768 CrossRefGoogle Scholar
  74. Pavuluri CM, Kawamura K, Tachibana E, Swaminathan T (2010) Elevated nitrogen isotope ratios of tropical Indian aerosols from Chennai: implication for the origins of aerosol nitrogen in South and Southeast Asia. Atmos Environ 44:3597–3604CrossRefGoogle Scholar
  75. Pavuluri CM, Kawamura K, Swaminathan T, Tachibana E (2011) Stable carbon isotopic compositions of total carbon, dicarboxylic acids and glyoxylic acid in the tropical Indian aerosols: implications for sources and photochemical processing of organic aerosols. J Geophys Res 116, D18307. doi: 10.1029/2011JD015617 CrossRefGoogle Scholar
  76. Pichlmayer F, Schöner W, Seibert P, Stichler W, Wagenbach D (1998) Stable isotope analysis for characterization of pollutants at high elevation alpine sites. Atmos Environ 32:4075–4085CrossRefGoogle Scholar
  77. Puxbaum H, Tenze-Kunit M (2003) Size distribution and seasonal variation of atmospheric cellulose. Atmos Environ 37:3693–3699CrossRefGoogle Scholar
  78. Rastogi N, Sarin MM (2005) Long-term characterization of ionic species in aerosols from urban and high-altitude sites in western India: role of mineral dust and anthropogenic sources. Atmos Environ 39:5541–5554CrossRefGoogle Scholar
  79. Reddy MS, Venkataraman C (1999) Direct radiative forcing from anthropogenic carbonaceous aerosols over India. Curr Sci 76(7):1005–1011Google Scholar
  80. Roberts GC, Artaxo P, Zhou J, Swietlicki E, Andreae MO (2002) Sensitivity of CCN spectra on chemical and physical properties of aerosol: a case study from the Amazon Basin. J Geophys Res 107(D20):8070. doi: 10.1029/2001JD000583 CrossRefGoogle Scholar
  81. Ruellan S, Cachier H (2000) Characterisation of fresh particulate vehicular exhausts near a Paris high flow road. Atmos Environ 35:453–468CrossRefGoogle Scholar
  82. Sagar R, Kumar B, Dumka UC, Moorthy KK, Pant P (2004) Characteristics of aerosol spectral optical depths over Manora Peak: a high altitude station in the central Himalayas. J Geophys Res 109, D06207. doi: 10.1029/2003JD003954 CrossRefGoogle Scholar
  83. Salam A, Bauer H, Kassin K, Ullah SM, Puxbaum H (2003) Aerosol chemical characteristics of a mega-city in Southeast Asia (Dhaka–Bangladesh). Atmos Environ 37:2517–2528CrossRefGoogle Scholar
  84. Sarangi T et al (2014) First simultaneous measurements of ozone, CO and NOy at a high altitude regional representative site in the central Himalayas. J Geophys Res 119(3):1592–1611. doi: 10.1002/2013JD020631 Google Scholar
  85. Satheesh SK (2012) Atmospheric chemistry and climate. Curr Sci 102(3):426–439Google Scholar
  86. Saxena P, Hildemann LM (1996) Water-soluble organics in atmospheric particles—a critical review of the literature and application of thermodynamics to identify candidate compounds. J Atmos Chem 24(1):57–109CrossRefGoogle Scholar
  87. Saxena KG, Ramakrishnan PS (1984) C3/C4 species distribution among herbs following slash and burn in north-eastern India. Acta Oecologica Oecologia Plantarum 5(4):335–346Google Scholar
  88. Schefub E, Ratmeyer V, Stuut J-BW, Jansen JHF, Sinninghe Damsté JS (2003) Carbon isotope analysis of nalkanes in dust from the lower atmosphere over the central eastern Atlantic. Geochim Cosmochim Acta 67:1757–1767CrossRefGoogle Scholar
  89. Sharma SK et al (2010) Seasonal variability of ambient NH3, NO, NO2 and SO2 over Delhi. J Environ Sci 22(7):1023–1028CrossRefGoogle Scholar
  90. Smith FA, Freeman KH (2006) Influence of physiology and climate on δD of leaf wax n-alkanes from C3 and C4 grasses. Geochim Cosmochim Acta 70:1172–1187CrossRefGoogle Scholar
  91. Stein O, Rudolph J (2007) Modeling and interpretation of stable carbon isotope ratios of ethane in global chemical transport models. J Geophys Res 112, D14308. doi: 10.1029/2006JD008062 CrossRefGoogle Scholar
  92. Stohl A, Koffi NE (1998) Evaluation of trajectories calculated from ECMWF data against constant volume balloon flight during ETEX. Atmos Environ 24:4151–4156CrossRefGoogle Scholar
  93. Sun Y et al (2010) Asian dust over northern China and its impact on the downstream aerosol chemistry in 2004. J Geophys Res 115, D00K09. doi: 10.1029/2009JD012757 CrossRefGoogle Scholar
  94. Takahashi Y et al (2008) Observation of transformation of calcite to gypsum in mineral aerosols by Ca K-edge X-ray absorption near-edge structure (XANES). Atmos Environ 42:6535–6541CrossRefGoogle Scholar
  95. Tang Y et al (2004) Three-dimensional simulations of inorganic aerosol distribution in east Asia during spring 2001. J Geophys Res 109, D19S23. doi: 10.1029/2003JD004201 Google Scholar
  96. Tare V et al (2006) Measurements of atmospheric parameters during Indian Space Research Organization Geosphere Biosphere Program Land Campaign II at a typical location in the Ganga Basin: 2. Chemical properties. J Geophys Res 111, D23210. doi: 10.1029/2006JD007279 CrossRefGoogle Scholar
  97. Turekian VC, Macko S, Ballentine D, Swap RJ, Garstang M (1998) Causes of bulk carbon and nitrogen isotopic fractionations in the products of vegetation burns: laboratory studies. Chem Geol 152:181–192CrossRefGoogle Scholar
  98. Turekian VC, Macko SA, Keene WC (2003) Concentrations, isotopic compositions, and sources of size‐resolved, particulate organic carbon and oxalate in near‐surface marine air at Bermuda during spring. J Geophys Res 108(D5):4157. doi: 10.1029/2002JD002053 CrossRefGoogle Scholar
  99. Turpin BJ, Huntzicker JJ (1991) Secondary formation of organic aerosol in the Los Angeles Basin: a descriptive analysis of organic and elemental carbon concentrations. Atmos Environ 25:207–215CrossRefGoogle Scholar
  100. Turpin BJ, Lim H-J (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol 35(1):602–610CrossRefGoogle Scholar
  101. Urban RC et al (2012) Use of levoglucosan, potassium, and water-soluble organic carbon to characterize the origins of biomass-burning aerosols. Atmos Environ 61:562–569CrossRefGoogle Scholar
  102. Venkataraman C, Reddy CK, Josson S, Reddy MS (2002) Aerosol size and chemical characteristics at Mumbai, India, during the INDOEX-IFP (1999). Atmos Environ 36(12):1979–1991CrossRefGoogle Scholar
  103. Venkataraman C et al (2006) Emissions from open biomass burning in India: integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data. Glob Biogeochem Cycles 20, GB2013. doi: 10.1029/2005GB002547 CrossRefGoogle Scholar
  104. Wang H, Kawamura K, Shooter D (2005) Carbonaceous and ionic components in wintertime atmospheric aerosols from two New Zealand cities: implications for solid fuel combustion. Atmos Environ 39:5865–5875CrossRefGoogle Scholar
  105. Wang X et al (2012) The secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditions. Atmos Environ 63:68–76CrossRefGoogle Scholar
  106. Widory D (2007) Nitrogen isotopes: tracers of origin and processes affecting PM10 in the atmosphere of Paris. Atmos Environ 41:2382–2390CrossRefGoogle Scholar
  107. Widory D et al (2004) The origin of atmospheric particles in Paris: a view through carbon and lead isotopes. Atmos Environ 38:953–961CrossRefGoogle Scholar
  108. Yadav S, Rajamani V (2004) Geochemistry of aerosols of northwestern part of India adjoining the Thar desert. Geochim Cosmochim Acta 68(9):1975–1988CrossRefGoogle Scholar
  109. Yamamoto S, Kawamura K, Seki O, Kariya T, Lee M (2013) Influence of aerosol source regions and transport pathway on δD of terrestrial biomarkers in atmospheric aerosols from the East China Sea. Geochim Cosmochim Acta 106:164–176CrossRefGoogle Scholar
  110. Zhang Q, Anastasio C, Jimenez-Cruz M (2002) Water-soluble organic nitrogen in atmospheric fine particles (PM2.5) from northern California. J Geophys Res 107(D11):4112. doi: 10.1029/2001JD000870, 2002 CrossRefGoogle Scholar
  111. Ziemba LD, Fischer E, Griffin RJ, Talbot RW (2007) Aerosol acidity in rural New England: temporal trends and source region analysis. J Geophys Res 112, D10S22. doi: 10.1029/2006JD007605 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Prashant Hegde
    • 1
    • 2
    Email author
  • Kimitaka Kawamura
    • 2
  • H. Joshi
    • 3
  • M. Naja
    • 3
  1. 1.Space Physics LaboratoryVikram Sarabhai Space CentreTrivandrumIndia
  2. 2.Institute of Low Temperature ScienceHokkaido UniversitySapporoJapan
  3. 3.Aryabhatta Research Institute of Observational SciencesNainitalIndia

Personalised recommendations