Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Development of a new portable air sampler based on electrostatic precipitation


Airborne particles are known to cause illness and to influence meteorological phenomena. It is therefore important to monitor their concentrations and to identify them. A challenge is to collect micro and nanoparticles, microorganisms as well as toxic molecules with a device as simple and small as possible to be used easily and everywhere. Electrostatic precipitation is an efficient method to collect all kinds of airborne particles. Furthermore, this method can be miniaturized. A portable, silent, and autonomous air sampler based on this technology is therefore being developed with the final objective to collect very efficiently airborne pathogens such as supermicron bacteria but also submicron viruses. Particles are collected on a dry surface so they may be concentrated afterwards in a small amount of liquid medium to be analyzed. It is shown that nearly 98 % of airborne particles from 10 nm to 3 μm are collected.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Adamiak K, Atrazhev V, Atten P (2005) Corona discharge in the hyperbolic point-plane configuration: direct ionization criterion versus an approximate formulations. IEEE Trans Dielectr Electr Insul 12(5):1015–1024

  2. Baisnée D, Thibaudon M, Baumier R, McMeeking G, Kok G, O’Connor D, Sodeau J, Huffman JA, Lassar W, Pierce K, Gallagher M, Crawford I, Salines G, Sarda-Estève R (2014) Simultaneous real-time fluorescence and microscopy measurements of bioaerosols during the BIODETECT 2014 campaign in Paris area. American Association for Aerosol Research (AAAR), Orlando

  3. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8

  4. Bauer H, Claeys M, Vermeylen R, Schueller E, Weinke G, Berger A, Puxbaum H (2008) Arabitol and mannitol as tracers for the quantification of airborne fungal spores. Atmos Environ 42:588–593

  5. Challenger O, Braven J, Harwood D, Rosén K, Richardson G (1996) Negative air ionisation and the generation of hydrogen peroxide. Sci Total Environ 177:215–219

  6. Chen J, Davidson JH (2002) Electron density and energy distributions in the positive DC corona: interpretation for corona-enhanced chemical reactions. Plasma Chem Plasma Process 22(2):199–224

  7. Chen J, Davidson JH (2003) Model of the negative DC corona plasma: comparison to the positive DC corona plasma. Plasma Chem Plasma Process 23(1):83–102

  8. Comtois P, Isard S (1999) Aerobiology: coming of age in a new millennium. Aerobiologia 15:259–266

  9. Courbon P, Wrobel R, Fabries JF (1988) A new individual respirable dust sampler: the CIP 10. Ann Occup Hyg 32(1):129–143

  10. Doubla A, Bouba Bello L, Fotso M, Brisset J-L (2008) Negative air ionisation and the generation of hydrogen peroxide. Dyes Pigments 77(1):118–124

  11. Douwes J, Thorne P, Pearce N, Heederik D (2003) Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg 47(3):187–200

  12. Engling G, Carrico CM, Kreidenweis SM, Collett JL Jr, Day DE, Malm WC, Lincoln E, Hao WM, Iinuma Y, Herrmann H (2006) Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection. Atmos Environ 40:299–311

  13. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14(24):1857–1860

  14. Görner P, Wrobel R, Micka V, Skoda V, Denis J, Fabries JF (2001) Study of fifteen respirable aerosol samplers used in occupational hygiene. Ann Occup Hyg 45(1):43–54

  15. Görner P, Fabries JF, Duquenne P, Witschger O, Wrobel R (2006) Bioaerosol sampling by a personal rotating cup sampler CIP 10-M. J Environ Monit 8:43–48

  16. Han T, Mainelis G (2008) Design and development of an electrostatic sampler for bioaerosols with high concentration rate. J Aerosol Sci 39:1066–1078

  17. Han B, Hudda N, Ning Z, Kim YJ, Sioutas C (2009) Efficient collection of atmospheric aerosols with a particle concentrator–electrostatic precipitator sampler. Aerosol Sci Technol 43:757–766

  18. Han T, An HR, Mainelis G (2010) Performance of an electrostatic precipitator with superhydrophobic surface when collecting airborne bacteria. Aerosol Sci Technol 44:339–348

  19. Han T, Nazarenko Y, Lioy PJ, Mainelis G (2011) Collection efficiencies of an electrostatic sampler with superhydrophobic surface for fungal bioaerosols. Indoor Air 21:110–120

  20. Han T, Fennell D, Mainelis G (2015) Development and optimization of the electrostatic precipitator with superhydrophobic surface (EPSS) mark II for collection of bioaerosols. Aerosol Sci Technol 49(4):210–219

  21. Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles, 2nd edn. Wiley, New York

  22. Jaworek A, Krupa A, Czech T (2007) Modern electrostatic devices and methods for exhaust gas cleaning: a brief review. J Electrost 65(3):133–155

  23. Kellogg C, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21(11):638–644

  24. Kim C, Park D, Noh KC, Hwang J (2010) Velocity and energy conversion efficiency characteristics of ionic wind generator in a multistage configuration. J Electrost 68:36–41

  25. Komeili B, Chang JS, Harvel GD, Ching CY, Brocilo D (2008) Flow characteristics of wire-rod type electrohydrodynamic gas pump under negative corona operations. J Electrost 66:342–353

  26. Kouvarakis G, Doukelis Y, Mihalopoulos N, Rapsomanikis S, Sciare J, Blumthaler M (2002) Chemical, physical, and optical characterization of aerosols during PAUR II experiment. J Geophys Res 107(D18):8141

  27. Lawless PA, Sparks LE (1985) Review of mathematical models for ESPs and comparison of their successes. Technical Report of the U.S. Department of Energy, US, pp 513–522

  28. Leal Ferreira GF, Oliveira ON, Giacometti JA (1986) Point‐to‐plane corona: current‐voltage characteristics for positive and negative polarity with evidence of an electronic component. J Appl Phys 59(9): 3045–3049

  29. Loeb LB (1947) The mechanism of the negative point corona at atmospheric pressure in relation to the first Townsend coefficient. Phys Rev 71(10):712

  30. Long Z, Yao Q (2010) Evaluation of various particle charging models for simulating particle dynamics in electrostatic precipitators. J Aerosol Sci 41:702–718

  31. Mainelis G, Grinshpun SA, Willeke K, Reponen T (1999) Collection of airborne microorganisms by electrostatic precipitation. Aerosol Sci Technol 30:127–144

  32. Mainelis G, Adhikari A, Willeke K, Lee SA, Reponen T, Grinshpun SA (2002) Collection of airborne microorganisms by a new electrostatic precipitator. Aerosol Sci Technol 33:1417–1432

  33. Martins AA (2013) Modeling of an improved positive corona thruster and actuator. J Electrost 69:61–67

  34. Miller A, Frey G, King G, Sunderman C (2010) A handheld electrostatic precipitator for sampling airborne particles and nanoparticles. Aerosol Sci Technol 44(6):417–427

  35. Mizuno A (2000) Electrostatic precipitation. IEEE Trans Dielectr Electr Insul 7(5):615–624

  36. Moreau E, Touchard G (2008) Enhancing the mechanical efficiency of electric wind in corona discharges. J Electrost 66:39–44

  37. Morris CE, Sands DC, Bardin M, Jaenicke R, Vogel B, Leyronas C, Ariya PA, Psenner R (2008) Microbiology and atmospheric processes: an upcoming era of research on bio-meteorology. Biogeosci Discuss 5:191–212

  38. Pardon G, Ladhani L, Sandström N, Ettori M, Lobov G, van der Wijngaart W (2015) Aerosol sampling using an electrostatic precipitator integrated with a microfluidic interface. Sensors Actuators B 212:344–352

  39. Piazzalunga A, Fermo P, Bernardoni V, Vecchi R, Valli G, De Gregorio MA (2010) A simplified method for levoglucosan quantification in wintertime atmospheric particulate matter by high-performance anion-exchange chromatography coupled with pulsed amperometric detection. Int J Environ Anal Chem 90:934–947

  40. Quinton E, Achard J-L, Roux J-M (2013) Ionic wind generator derived from a liquid filled capillary pin. Appli Part Cap J Electrostat 71(6):963–969

  41. Richardson G, Eick SA, Harwood DJ, Rosén KG, Dobbs F (2003) Negative air ionisation and the production of hydrogen peroxide. Atmos Environ 37:3701–3706

  42. Robinson M (1961) Movement of air in the electric wind of the corona discharge. Trans Am Inst Electr Eng 80(2):143–150

  43. Roux J-M, Kaspari O, Heinrich R, Hanschmann N, Grunow R (2013) Investigation of a new electrostatic sampler for concentrating biological and non-biological aerosol particles. Aerosol Sci Technol 47(5):463–471

  44. Roux J-M, Rongier A, Jary D (2015) Importance of the substrate nature to preserve microorganisms’ cultivability in electrostatic air samplers. Electrostatics 2015, Southampton

  45. Saiyasitpanich P, Keener TC, Lu M, Khang SJ, Evans DG (2006) Collection of ultrafine diesel particulate matter (DPM) in cylindrical single-stage wet electrostatic precipitators. Environ Sci Technol 40:7890–7895

  46. Sarda Esteve R, Roux JM, Sciare J, Nadal MH, Delapierre G (2013) Physico-chemical qualification and refinements of a new portable bio aerosols collector: BIODOSI. Charged Aerosols, London

  47. Sillanpää M, Geller MD, Phuleria HC, Sioutas C (2008) High collection efficiency electrostatic precipitator for in vitro cell exposure to concentrated ambient particulate matter (PM). J Aerosol Sci 39:335–347

  48. Tan M, Shen F, Yao M, Zhu T (2011) Development of an automated electrostatic sampler (AES) for bioaerosol detection. Aerosol Sci Technol 45:1154–1160

  49. Villot A, Gonthier Y, Gonze E, Bernis A (2013) Effect of the experimental parameters on the number of free electrons in the drift region of a wire-cylinder electrostatic precipitator. J Electrost 71(4):815–822

  50. Yao M, Mainelis G (2006a) Investigation of cut-off sizes and collection efficiencies of portable microbial samplers. Aerosol Sci Technol 40:595–606

  51. Yao M, Mainelis G (2006b) Utilization of natural electrical charges on airborne microorganisms for their collection by electrostatic means. J Aerosol Sci 37:513–527

  52. Yao M, Zhang H, Dong S, Zhen S, Chen X (2009) Comparison of electrostatic collection and liquid impinging methods when collecting airborne house dust allergens, endotoxin and (1,3)-β-d-glucans. J Aerosol Sci 40:492–502

  53. Zhao L, Adamiak K (2005) EHD flow in air produced by electric corona discharge in pin-plate configuration. J Electrost 63:337–350

Download references


This work was supported by the French CBRN-E R&D research program.

Author information

Correspondence to J. M. Roux.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roux, J.M., Sarda-Estève, R., Delapierre, G. et al. Development of a new portable air sampler based on electrostatic precipitation. Environ Sci Pollut Res 23, 8175–8183 (2016).

Download citation


  • Electrostatic precipitation
  • Air sampling
  • Corona discharge
  • Portable device
  • Ionic wind
  • Nanoparticles