Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 23, pp 18616–18625 | Cite as

Effect of arbuscular mycorrhizal and bacterial inocula on nitrate concentration in mesocosms simulating a wastewater treatment system relying on phytodepuration

  • Guido Lingua
  • Andrea Copetta
  • Davide Musso
  • Stefania Aimo
  • Angelo Ranzenigo
  • Alessandra Buico
  • Valentina Gianotti
  • Domenico Osella
  • Graziella Berta
Research Article

Abstract

High nitrogen concentration in wastewaters requires treatments to prevent the risks of eutrophication in rivers, lakes and coastal waters. The use of constructed wetlands is one of the possible approaches to lower nitrate concentration in wastewaters. Beyond supporting the growth of the bacteria operating denitrification, plants can directly take up nitrogen. Since plant roots interact with a number of soil microorganisms, in the present work we report the monitoring of nitrate concentration in macrocosms with four different levels of added nitrate (0, 30, 60 and 90 mg l−1), using Phragmites australis, inoculated with bacteria or arbuscular mycorrhizal fungi, to assess whether the use of such inocula could improve wastewater denitrification. Higher potassium nitrate concentration increased plant growth and inoculation with arbuscular mycorrhizal fungi or bacteria resulted in larger plants with more developed root systems. In the case of plants inoculated with arbuscular mycorrhizal fungi, a faster decrease of nitrate concentration was observed, while the N%/C% ratio of the plants of the different treatments remained similar. At 90 mg l−1 of added nitrate, only mycorrhizal plants were able to decrease nitrate concentration to the limits prescribed by the Italian law. These data suggest that mycorrhizal and microbial inoculation can be an additional tool to improve the efficiency of denitrification in the treatment of wastewaters via constructed wetlands.

Keywords

Constructed wetland Arbuscular mycorrhizae Denitrification Plant growth-promoting bacteria Phytoremediation Phragmites australis 

Notes

Acknowledgments

This work was part of the project “Sviluppo di sistemi di abbattimento dell’inquinamento tramite lagunaggio” and partly funded by AMIAS (Azienda Multiservizi Idrici e Ambientali Scrivia) and by Cassa di Risparmio di Alessandria.

The authors wish to thank Mybasol s.r.l. (Alessandria, Italy) for the support during the experimental work and Dr. Elisa Gamalero for kindly providing Pseudomonas fluorescens PF7 and critically reading the manuscript.

Supplementary material

11356_2015_5502_MOESM1_ESM.docx (4.4 mb)
Fig. S1 (DOCX 4538 kb)
11356_2015_5502_MOESM2_ESM.docx (674 kb)
Fig. S2 (DOCX 673 kb)
11356_2015_5502_MOESM3_ESM.docx (22 kb)
Table 1S (DOCX 21 kb)
11356_2015_5502_MOESM4_ESM.docx (28 kb)
Table 2S (DOCX 27 kb)
11356_2015_5502_MOESM5_ESM.docx (28 kb)
Table 3S (DOCX 28 kb)

References

  1. Akratos CS, Tsihrintzis VA (2007) Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol Eng 29:173–191CrossRefGoogle Scholar
  2. Allen JG, Beutel MW, Call DR, Fischer AM (2010) Effects of oxygenation on ammonia oxidation potential and microbial diversity in sediment from surface-flow wetland mesocosms. Bioresour Technol 101:1389–1392CrossRefGoogle Scholar
  3. Anderson RC, Liberta AE, Dickman LA (1984) Interaction of vascular plants and vesicular-arbuscular mycorrhizal fungi across a soil moisture-nutrient gradient. Oecologia 64:111–117CrossRefGoogle Scholar
  4. Bachand PAM, Horne AJ (2000a) Denitrification in constructed free-water surface wetlands: I. Very high nitrate removal rates in a macrocosm study. Ecol Eng 14:9–15CrossRefGoogle Scholar
  5. Bachand PAM, Horne AJ (2000b) Denitrification in constructed free-water surface wetlands: II. Effects of vegetation and temperature. Ecol Eng 14:17–32CrossRefGoogle Scholar
  6. Berta G, Fusconi A, Trotta A (1993) VA mycorrhizal infection and the morphology and function of root systems. Environ Exp Bot 33:159–173CrossRefGoogle Scholar
  7. Berta G, Sampò S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctonia root-rot of tomato by Glomus mossae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Eur J Plant Pathol 111:279–288CrossRefGoogle Scholar
  8. Bohrer KE, Friese CF, Amon JP (2004) Seasonal dynamics of arbuscular mycorrhizal fungi in differing wetland habitats. Mycorrhiza 14:329–337CrossRefGoogle Scholar
  9. Brown M, Bledsoe C (1996) Spatial and temporal dynamics Jaumea carnosa, a tidal saltmarsh halophyte. J Ecol 84:703–715CrossRefGoogle Scholar
  10. Burke DJ, Hamerlynck EP, Hahn D (2002) Interactions among plant species and microorganisms in salt marsh sediments. Appl Environ Microbiol 68:1157–1164CrossRefGoogle Scholar
  11. Cantelmo AJJ, Ehrenfeld JG (1999) Effects of microtopography on mycorrhizal infection in Atlantic white cedar (Chamaecyparis thyoides (L.) Mills.). Mycorrhiza 8:175–180CrossRefGoogle Scholar
  12. Cooke JC, Lefor MW (1998) The mycorrhizal status of selected plant species from Connecticut wetlands and transition zones. Restor Ecol 6:214–222CrossRefGoogle Scholar
  13. Dolinar N, Gaberščik A (2010) Mycorrhizal colonization and growth of Phragmites australis in an intermittent wetland. Aquat Bot 93:93–98CrossRefGoogle Scholar
  14. Drizo A, Frost CA, Grace J, Smith KA (2000) Phosphate and ammonium distribution in a pilot-scale constructed wetland with horizontal subsurface flow using shale as a substrate. Water Res 34:2483–2490CrossRefGoogle Scholar
  15. Elser J, Marzolf E, Goldman C (1990) Phosphorus and nitrogen limitation of phytoplankton growth in the fresh-waters of North-America—a review and critique of experimental enrichments. Can J Fish Aquat Sci 47:1468–1477CrossRefGoogle Scholar
  16. Gale PM, Redely KR, Graetz DA (1993) Nitrogen removal from reclaimed water applied to constructed and natural wetland microcosms. Water Environ Res 65:162–168CrossRefGoogle Scholar
  17. Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2008) Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol Ecol 64:459–467CrossRefGoogle Scholar
  18. Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2010) Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions. J Appl Microbiol 108:236–245CrossRefGoogle Scholar
  19. Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 117:109–117CrossRefGoogle Scholar
  20. Gray S, Kinross J, Read P, Marland A (2000) The nutrient assimilative capacity of maerl as a substrate in constructed wetland systems for waste treatment. Water Res 34:2183–2190CrossRefGoogle Scholar
  21. He Q, Mankin KR (2003) Performance variations of COD and nitrogen removal by vegetated submerged bed wetlands. J Am Water Resour Assoc 38:1679–1689CrossRefGoogle Scholar
  22. Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187CrossRefGoogle Scholar
  23. Huang J, Reneau RBJ, Hagedorn C (2000) Nitrogen removal in constructed wetlands employed to treat domestic wastewater. Water Res 34:2582–2588CrossRefGoogle Scholar
  24. Kadlec RH, Knight RL (1996) Treatment wetlands. CRC/Lewis, Boca RatonGoogle Scholar
  25. Khan A (1974) Occurrence of mycorrhizas in halophytes, hydrophytes and xerophytes, and of endogone spores in adjacent soils. J Gen Microbiol 81:7–14CrossRefGoogle Scholar
  26. Korboulewsky N, Wang R, Baldy V (2012) Purification processes involved in sludge treatment by a vertical flow wetland system: focus on the role of the substrate and plants on N and P removal. Bioresour Technol 105:9–14CrossRefGoogle Scholar
  27. Kuschk P, Wiessner A, Kappelmeyer U, Weissbrodt E, Kästner M, Stottmeister U (2003) Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate. Water Res 37:4236–4242CrossRefGoogle Scholar
  28. Lingua G, D’Agostino G, Massa N, Antosiano M, Berta G (2002) Mycorrhiza-induced differential response to a yellows disease in tomato. Mycorrhiza 12:191–198CrossRefGoogle Scholar
  29. Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, Burlando B, Parravicini V, Torrigiani P, Berta G (2008a) Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environ Pollut 153:137–147CrossRefGoogle Scholar
  30. Lingua G, Gamalero E, Fusconi A, Lemanceau P, Berta G (2008b) Colonization of plant roots by pseudomonads and AM fungi: a dynamic phenomenon, affecting plant growth and health. In: Varma A (ed) Mycorrhiza. Springer, Berlin, pp 601–626CrossRefGoogle Scholar
  31. Marschner H (1995) Mineral nutrition in higher plants. 2nd Edition. Academic, LondonGoogle Scholar
  32. Mejstrik V (1984) Ecology of vesicular arbuscular mycorrhizae of the Schoenetum-nigricantis bohemicum community in the Grabanowsky swamps reserve. Sov J Ecol 15:18–23Google Scholar
  33. Mosse B, Stribley DP, LeTacon F (1981) Ecology of mycorrhizasand mycorrhizal fungi. In: Alexander M (ed) Advances inmicrobial ecology. Plenum Press, New York, pp 137–210Google Scholar
  34. Oliveira RS, Dodd JC, Castro PML (2001) The mycorrhizal status of Phragmites australis in several polluted soils and sediments of an industrialised region of Northern Portugal. Mycorrhiza 10:241–247CrossRefGoogle Scholar
  35. Phipps RG, Crumpton WG (1994) Factors affecting nitrogen loss in experimental wetlands with different hydrologic loads. Ecol Eng 3:399–408CrossRefGoogle Scholar
  36. Pivato B, Offre P, Marchelli S, Barbonaglia B, Mougel C, Lemanceau P, Berta G (2009) Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza 19:81–90CrossRefGoogle Scholar
  37. Ragupathy S, Mohankumar V, Mahadevan A (1990) Occurrence of vesicular-arbuscular mycorrhizae in tropical hydrophytes. Aquat Bot 36:287–291CrossRefGoogle Scholar
  38. Reddy KR, Patrick WH (1984) Nitrogen transformations and loss in flooded soils and sediments. Crit Rev Environ Control 13:273–309CrossRefGoogle Scholar
  39. Reilly JF, Horne AJ, Miller CD (2000) Nitrate removal from a drinking water supply with large free-surface constructed wetlands prior to groundwater recharge. Ecol Eng 14:33–47CrossRefGoogle Scholar
  40. Rousseau DPL, Vanrolleghem PA, De Pauw N (2004) Constructed wetlands in Flanders: a performance analysis. Ecol Eng 23:151–163CrossRefGoogle Scholar
  41. Schüßler A, Walker C (2010) The Glomeromycota. A species list with new families and new genera. Gloucester. Published in December 2010 in libraries at The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State UniversityGoogle Scholar
  42. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, LondonGoogle Scholar
  43. Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250CrossRefGoogle Scholar
  44. Trotta A, Varese GC, Gnavi E, Fusconi A, Sampò S, Berta G (1996) Interactions between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209CrossRefGoogle Scholar
  45. Trouvelot A, Kough J, Gianinazzi-Pearson V (1986) Mesure du taux de mycorrhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Mycorrhizae physiology and genetics. INRA, Paris, pp 217–221Google Scholar
  46. Turner SD, Friese CF (1998) Plant-mycorrhizal community dynamics associated with a moisture gradient within a rehabilitated prairie fen. Restor Ecol 6:44–51CrossRefGoogle Scholar
  47. Turner SD, Amon JP, Schneble RM, Friese CF (2000) Mycorrhizal fungi associated with plants in ground-water fed wetlands. Wetlands 20:200–204CrossRefGoogle Scholar
  48. Wirsel SGR (2004) Homogenous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 48:129–138CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Guido Lingua
    • 1
  • Andrea Copetta
    • 1
    • 2
    • 4
  • Davide Musso
    • 1
  • Stefania Aimo
    • 1
    • 2
  • Angelo Ranzenigo
    • 3
  • Alessandra Buico
    • 1
  • Valentina Gianotti
    • 1
  • Domenico Osella
    • 1
  • Graziella Berta
    • 1
    • 2
  1. 1.Dipartimento di Scienze e Innovazione TecnologicaUniversità del Piemonte Orientale “Amedeo Avogadro”AlessandriaItaly
  2. 2.Mybasol S.r.l.AlessandriaItaly
  3. 3.Giardino Botanico di Alessandria “Dina Bellotti”AlessandriaItaly
  4. 4.C.R.A.-Unità di ricerca per le produzioni legnose fuori forestaCasale MonferratoItaly

Personalised recommendations