Advertisement

Environmental Science and Pollution Research

, Volume 24, Issue 13, pp 11978–11990 | Cite as

Chemical element accumulation in tree bark grown in volcanic soils of Cape Verde—a first biomonitoring of Fogo Island

  • Rosa Marques
  • Maria Isabel Prudêncio
  • Maria do Carmo Freitas
  • Maria Isabel Dias
  • Fernando Rocha
Biomonitoring of atmospheric pollution: possibilities and future challenges

Abstract

Barks from Prosopis juliflora (acacia) were collected in 12 sites of different geological contexts over the volcanic Fogo Island (Cape Verde). Elemental contents of Ba, Br, Co, Cr, Fe, K, Na, Zn and some rare earth elements (REE)—La, Ce, Sm, Eu, Tb, Yb, and Lu, were obtained for biological samples and topsoils by using k 0-standardized and comparative method of instrumental neutron activation analysis (INAA), aiming the evaluation of chemical elements uptake by acacia bark. This first biomonitoring study of Fogo Island showed that, in general, significant accumulations of trace elements present in high amounts in these soils occur. This can be partially explained by the semi-arid climate with a consequent bioavailability of chemical elements when rain drops fall in this non-polluted environment. REE enrichment factors (EFs) increase with the decrease of ionic radius. Heavy REE (HREE) are significantly enriched in bark, which agrees with their release after the primary minerals breakdown and the formation of more soluble compounds than the other REE, and uptake by plants. Among the potential harmful chemical elements, Cr appears to be partially retained in nanoparticles of iron oxides. The high EFs found in tree barks of Fogo Island are certainly of geogenic origin rather than anthropogenic input since industry and the use of fertilizers is scarce.

Keywords

Biomonitoring Bark Trace elements REE Volcanic soils Fogo Island INAA 

Notes

Acknowledgments

The authors would like to thank the reviewers for their careful and constructive reviews that considerably improved the manuscript. Grateful acknowledgments are made to financial support made by the project UID/GEO/04035/2013, and also to the staff of the Portuguese Research Reactor (RPI) of CTN/IST for their assistance with the neutron irradiations. C2TN/IST authors are thankful to the FCT (the Portuguese Science and Technology Foundation) support through the UID/Multi/04349/2013 project.

References

  1. Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Heal 31:537–548. doi: 10.1007/s10653-009-9255-4 CrossRefGoogle Scholar
  2. Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214, http://www.ucolick.org/~woosley/ay220-11/papers/ag89.pdf CrossRefGoogle Scholar
  3. Bañuelos GS, Ajwa HA (1999) Trace elements in soils and plants: an overview. J Environ Sci Heal A 34(4):951–974. doi: 10.1080/10934529909376875 CrossRefGoogle Scholar
  4. Baxter I, Hermans C, Lahner B, Yakubova E, Tikhonova M (2012) Biodiversity of mineral nutrient and trace element accumulation in Arabidopsis thaliana. PLoS ONE 7(4), e35121. doi: 10.1371/journal.pone.0035121 CrossRefGoogle Scholar
  5. Chiarenzelli JR, Aspler LB, Dunn C, Cousens B, Ozarko DL, Powis KB (2001) Multi-element and rare earth element composition of lichens, mosses, and vascular plants from the Central Barrenlands, Nunavut, Canada. Appl Geochem 16:245–270. doi: 10.1016/S0883-2927(00)00027-5 CrossRefGoogle Scholar
  6. Clarkson PJ, Larrazabal-Moya D, Staton I, McLeod CW, Ward DB, Sharifi VN, Swithenbank J (2002) The use of tree bark as a passive sampler for polychlorinated dibenzo-p-dioxins and furans. Int J Environ An Chem 82:843–850. doi: 10.1080/0306731021000102301 CrossRefGoogle Scholar
  7. Compton JS, White RA, Smith M (2003) Rare earth element behavior in soils and salt pan sediments of a semi-arid granitic terrain in the Western Cape, South Africa. Chem Geol 201:239–255. doi: 10.1016/S0009-2541(03)00239-0 CrossRefGoogle Scholar
  8. Cruz J, Silva MO, Dias MI, Prudêncio MI (2013) Groundwater composition and pollution due to agricultural practices in Sete Cidades Volcano (Azores, Portugal). Appl Geochem 29:162–173. doi: 10.1016/j.apgeochem.2012.11.009 CrossRefGoogle Scholar
  9. De Corte F (1987) The k 0-standardization method—a move to the optimization of neutron activation analysis (Aggrégé Thesis). Institute for Nuclear Sciences, University of Gent, GentGoogle Scholar
  10. De Corte F (2001) The standardization of standardless NAA. J Radioanal Nucl Chem 248:13–20. doi: 10.1023/A:1010601403010 CrossRefGoogle Scholar
  11. De Nicola F, Maisto G, Alfani A (2003) Assessment of nutritional status and trace element contamination of holm oak woodlands through analyses of leaves and surrounding soils. Sci Total Environ 311:191–203. doi: 10.1016/S0048-9697(03)00132-3 CrossRefGoogle Scholar
  12. Dias MI, Prudêncio MI (2007) Neutron activation analysis of archaeological materials: an overview of the ITN NAA laboratory, Portugal. Archaeometry 49(2):381–391. doi: 10.1111/j.1475-4754.2007.00308.x CrossRefGoogle Scholar
  13. Dung HM, Freitas MC, Santos JP, Marques JG (2010) Re-characterization of irradiation facilities for k0-NAA at RPI after conversion to LEU fuel and re-arrangement of core configuration. Nucl Instrum Meth A 622:438–442. doi: 10.1016/j.nima.2010.02.057 CrossRefGoogle Scholar
  14. Förstner U (1995) Metal speciation and contamination of soil. CRC, Boca Raton, pp 1–33Google Scholar
  15. Frahm JP, Lindlar A, Sollman P, Fischer E (1996) Bryophytes from the Cape Verde Islands. TROP Bryol 12:123–153, http://core.ac.uk/download/pdf/14529978.pdf Google Scholar
  16. Freitas MC (1993) The development of k 0-standardized neutron activation analysis with counting using a low energy photon detector (PhD Thesis). Institute for Nuclear Sciences, University of Gent, GentGoogle Scholar
  17. Freitas MC, Martinho E (1989a) Neutron activation analysis of reference materials by the k 0-standardization and relative methods. Anal Chim Acta 219:317–322. doi: 10.1016/S0003-2670(00)80363-3 CrossRefGoogle Scholar
  18. Freitas MC, Martinho E (1989b) Accuracy and precision in instrumental neutron activation analysis of reference materials and lake sediments. Anal Chim Acta 223:287–292. doi: 10.1016/S0003-2670(00)84093-3 CrossRefGoogle Scholar
  19. Freitas MC, Pacheco AMG, Dionísio I, Sarmento S, Baptista MS, Vasconcelos MTSD, Cabral JP (2006) Multianalytical determination of trace elements in atmospheric biomonitors by k 0-INAA, ICP-MS and AAS. Nucl Instrum Meth A 564:733–742. doi: 10.1016/j.nima.2006.04.008 CrossRefGoogle Scholar
  20. Galinha C, Freitas MC, Pacheco AMG (2010) Enrichment factors and transfer coefficients from soil to rye plants by INAA. J Radioanal Nucl Chem 286:583–589. doi: 10.1007/s10967-010-0803-2 CrossRefGoogle Scholar
  21. Godinho RM, Wolterbeek HT, Verburg T, Freitas MC (2008) Bioaccumulation behaviour of transplants of the lichen Flavoparmelia caperata in relation to total deposition at a polluted location in Portugal. Environ Pollut 151:318–325. doi: 10.1016/j.envpol.2007.06.034 CrossRefGoogle Scholar
  22. Gouveia MA, Prudêncio MI (2000) New data on sixteen reference materials obtained by INAA. J Radioanal Nucl Chem 245:105–108. doi: 10.1023/A:1006748407917 CrossRefGoogle Scholar
  23. Gouveia MA, Prudêncio MI, Morgado I, Cabral JMP (1992) New data on the GSJ reference rocks JB-1a and JG-1a by instrumental neutron activation analysis. J Radioanal Nucl Chem 158:115–120. doi: 10.1007/BF02034778 CrossRefGoogle Scholar
  24. Govindaraju K (1994) Compilation of working values and sample description for 383 geostandards. Geostandard Newslett 18:1–158CrossRefGoogle Scholar
  25. Henderson P (1996) Chapter 1. The rare earth elements: introduction and review. In: Jones AP, Wall F, Terry Williams C (eds) Rare earth minerals: chemistry, origin and ore deposits. Chapman & Hall, London, pp 1–9Google Scholar
  26. Hermanson MH, Hites RA (1990) Polychlorinated biphenyls in tree bark. Environ Sci Technol 24:666–671. doi: 10.1021/es00075a008 CrossRefGoogle Scholar
  27. Hermanson MH, Johnson GW (2007) Polychlorinated biphenyls in tree bark near a former manufacturing plant in Anniston, Alabama. Chemosphere 68:191–198. doi: 10.1016/j.chemosphere.2006.11.068 CrossRefGoogle Scholar
  28. Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC, Cotte M, Rico C, Peralta-Videa JR, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL (2013) In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7:1415–1423. doi: 10.1021/nn305196q CrossRefGoogle Scholar
  29. INMG (2010) Segunda comunicação nacional de cabo verde para as mudanças climáticas. Ministério do Ambiente, Desenvolvimento Rural e Recursos Marinhos. Inst Nac Meteo Geofís. www.sia.cv/ (in Portuguese)
  30. ITRC (Interstate Technology & Regulatory Council) (2001) Phytotechnology technical and regulatory guidance document. http://www.itrcweb.org/Guidance/GetDocument?documentID=64
  31. Kabata-Pendias H (2001) Trace elements in soils and plants. CRC, Boca RatonGoogle Scholar
  32. Korotev RL (1996a) A self-consistent compilation of elemental concentration data for 93 geochemical reference samples. Geostandard Newslett 20:217–245. doi: 10.1111/j.1751-908X.1996.tb00185.x CrossRefGoogle Scholar
  33. Korotev RL (1996b) On the relationship between the Apollo 16 ancient regolith breccias and feldspathic fragmental breccias, and the composition of the prebasin crust in the Central Highlands of the Moon. Meteorit Planet Sci 31:403–412, http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19980018585.pdf CrossRefGoogle Scholar
  34. Lahd Geagea M, Stille P, Millet M, Perrone T (2007) REE characteristics and Pb, Sr and Nd isotopic compositions of steel plant emissions. Sci Total Environ 373:404–419. doi: 10.1016/j.scitotenv.2006.11.011 CrossRefGoogle Scholar
  35. Lahd Geagea M, Stille P, Gauthier-Lafaye F, Perrone T, Aubert D (2008a) Baseline determination of the atmospheric Pb, Sr and Nd isotopic compositions in the Rhine valley, Vosges mountains (France) and the Central Swiss Alps. Appl Geochem 23:1703–1714. doi: 10.1016/j.apgeochem.2008.02.004 CrossRefGoogle Scholar
  36. Lahd Geagea M, Stille P, Gauthier-Lafaye F, Millet M (2008b) Tracing of industrial aerosol sources in an urban environment using Pb, Sr, and Nd isotopes. Environ Sci Technol 42:692–698. doi: 10.1021/es071704c CrossRefGoogle Scholar
  37. Lopez-Moreno ML, De La Rosa G, Hernanez-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010a) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320. doi: 10.1021/es903891g CrossRefGoogle Scholar
  38. Lopez-Moreno ML, De la Rosa G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010b) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689–3693. doi: 10.1021/jf904472e CrossRefGoogle Scholar
  39. Loska K, Wiechuła D, Pelczar J (2005) Application of enrichment factor to assessment of zinc enrichment/depletion in farming soils. Commun Soil Sci Plan 36:1117–1128. doi: 10.1081/CSS-200056880 CrossRefGoogle Scholar
  40. Lucas Y (2001) The role of plants in controlling rates and products of weathering: importance of biological pumping. Ann Rev Earth Pl Sci 29:135–163. doi: 10.1146/annurev.earth.29.1.135 CrossRefGoogle Scholar
  41. Ludwig JA, Tongway DJ, Marsden SG (1999) Stripes, strands or stipples: modelling the influence of three landscape banding patterns on resource capture and productivity in semi-arid woodlands, Australia. Catena 37:257–273. doi: 10.1016/S0341-8162(98)00067-8 CrossRefGoogle Scholar
  42. Madeira J, Brum da Silveira A (2005) Geomorphic and structural analysis of the Fogo Island Volcano (Cape Verde). Abstract Volume of SAL2005 International Workshop on Ocean Island Volcanism, Sal, Cape VerdeGoogle Scholar
  43. Madeira J, Munhá J, Tassinari CGC, Mata J, Brum da Silveira A, Martins S (2005) K/Ar ages of carbonatites from the island of Fogo (Cape Verde). Actas da XIV Semana da geoquímica e VII Congresso de geoquímica dos países de língua Portuguesa, 475–478. http://www.researchgate.net/profile/Jose_Madeira3/publication/257425711_KAr_ages_of_carbonatites_from_the_Island_of_Fogo_(cape_Verde)/links/00b7d52541fc8d7abe000000.pdf
  44. Marques R, Prudêncio MI, Rocha F, Cabral Pinto MS, Silva MMVG, Ferreira da Silva E (2012) REE and other trace and major elements in the topsoil layer of Santiago Island, Cape Verde. J Afr Earth Sci 64:20–33. doi: 10.1016/j.jafrearsci.2011.11.011 CrossRefGoogle Scholar
  45. Marques R, Prudêncio MI, Waerenborgh JC, Rocha F, Dias MI, Ruiz F, Ferreira da Silva E, Abad M, Muñoz AM (2014a) Origin of reddening in a paleosol buried by lava flows in Fogo Island (Cape Verde). J Afr Earth Sci 96:60–70. doi: 10.1016/j.jafrearsci.2014.03.019 CrossRefGoogle Scholar
  46. Marques R, Waerenborgh JC, Prudêncio MI, Dias MI, Rocha F, Ferreira da Silva E (2014b) Iron speciation in volcanic topsoils from Fogo Island (Cape Verde)—iron oxide nanoparticles and trace elements concentrations. Catena 113:95–106. doi: 10.1016/j.catena.2013.09.010 CrossRefGoogle Scholar
  47. Maurice PA (2009) Environmental surfaces and interfaces from the nanoscale to the global scale. Wiley, New JerseyGoogle Scholar
  48. Monteiro FA, Nogueiro RC, Melo LCA, Artur AG, da Rocha F (2011) Effect of barium on growth and macronutrient nutrition in Tanzania guineagrass grown in nutrient solution. Soil Sci Plant Anal 42:1510–1521. doi: 10.1080/00103624.2011.581725 CrossRefGoogle Scholar
  49. Nakanishi TM, Takahashi J, Yagi H (1997) Rare earth element, Al, and Sc partition between soil and Caatinger wood grown in north-east Brazil by instrumental neutron activation analysis. Biol Trace Elem Res 60(3):163–174. doi: 10.1007/BF02784437 CrossRefGoogle Scholar
  50. Olehowski C, Naumann S, Fischer D, Siegmund A (2008) Geo-ecological spatial pattern analysis of the island of Fogo (Cape Verde). Glob Planet Chang 64:188–197. doi: 10.1016/j.gloplacha.2008.09.006 CrossRefGoogle Scholar
  51. Pacheco AMP, Freitas MC (2009) Trace-element enrichment in epiphytic lichens and tree bark at Pico Island, Azores, Portugal. J Air Waste Manag 59:411–418. doi: 10.3155/1047-3289.59.4.411 CrossRefGoogle Scholar
  52. Pacheco AMG, Freitas MC, Barros LIC, Figueira R (2001) Investigating tree bark as an air-pollution biomonitor by means of neutron activation analysis. J Radioanal Nucl Chem 249(2):327–331. doi: 10.1023/A:1013293814789 CrossRefGoogle Scholar
  53. Pacheco AMG, Barrosa LIC, Freitas MC, Reis MA, Hipólito C, Oliveira OR (2002) An evaluation of olive-tree bark for the biological monitoring of airborne trace-elements at ground level. Environ Pollut 120:79–86. doi: 10.1016/S0269-7491(02)00130-6 CrossRefGoogle Scholar
  54. Prudêncio MI (2007) Biogeochemistry of trace and major elements in a surface environment (volcanic rock, soil, mosses, lichens) in the S. Miguel Island, Azores. Port J Radioanal Nucl Chem 271(2):431–437. doi: 10.1007/s10967-007-0227-9 CrossRefGoogle Scholar
  55. Prudêncio MI (2009) Ceramic in ancient societies: a role for nuclear methods of analysis. In: Koskinen AN (ed) Nuclear chemistry: new research. Nova Science, New York, pp 51–81Google Scholar
  56. Prudêncio MI, Dias MI, Waerenborgh JC, Ruiz F, Trindade MJ, Abad M, Marques R, Gouveia MA (2011) Rare earth and other trace and major elemental distribution in a pedogenic calcrete profile (Slimene, NE Tunisia). Catena 87:147–156. doi: 10.1016/j.catena.2011.05.018 CrossRefGoogle Scholar
  57. Rico CM, Hong J, Morales MI, Zhao L, Barrios AC, Zhang J, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47:5635–5642. doi: 10.1021/es401032m CrossRefGoogle Scholar
  58. Sander R, Keene WC, Pszenny AAP, Arimoto R, Ayers GP, Baboukas E, Cainey JM, Crutzen PJ, Duce RA, Onninger GH, Huebert BJ, Maenhaut W, Mihalopoulos N, Turekian VC, Van Dingenen R (2003) Inorganic bromine in the marine boundary layer: a critical review. Atmos Chem Phys 3:2963–3050. doi: 10.5194/acp-3-1301-2003 CrossRefGoogle Scholar
  59. Sehmi K, Abdalla OAE, Khirbash S, Khan T, Asaidi S, Farooq S (2009) Mobility of rare earth elements in the system soils-plants-groundwaters: a case study of an arid area (Oman). Arab J Geosci 2:143–150. doi: 10.1007/s12517-008-0024-y CrossRefGoogle Scholar
  60. Senhou A, Chouak A, Cherkaoui R, Moutia Z, Lferde M, Elyahyaoui A, El Khoukhi T, Bounakhla M, Embarche K, Gaudry A (2002) Sensitivity of biomonitors and local variations of element concentrations in air pollution biomonitoring. J Radioanal Nucl Chem 254:343–349. doi: 10.1023/A:1021688203179 CrossRefGoogle Scholar
  61. Shagal MH, Maina HM, Donatus RB, Tadzabia K (2012) Bioaccumulation of trace metals concentration in some vegetables grown near refuse and effluent dumpsites along Rumude-Doubeli bye-pass in Yola North, Adamawa State. GARJEST 1(2):018–022Google Scholar
  62. Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753. doi: 10.1016/j.envint.2005.02.003 CrossRefGoogle Scholar
  63. Torres PC, Madeira J, Silva LC, Brum da Silveira A, Serralheiro A, Mota Gomes A (1998) Carta geológica da ilha do Fogo (República de Cabo Verde). Erupções históricas e formações enquadrantes. LATTEX, Departamento de Geologia da Fac. de Ciências da Univ. de Lisboa. Escala 1–25000Google Scholar
  64. Wen S, Yang F, Li JG, Gong Y, Zhang XL, Hui Y, Wu YN, Zhao YF, Xu Y (2009) Polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) monitored by tree bark in an E-waste recycling area. Chemosphere 74:981–987. doi: 10.1016/j.chemosphere.2008.10.002 CrossRefGoogle Scholar
  65. Wilson B, Pyatt B, Denton G (2009) An evaluation of the bioavailability and bioaccumulation of selected metals occurring in a wetland area on the volcanic island of Guam, Western Pacific Ocean. J Environ Sci 21:1547–1551. doi: 10.1016/S1001-0742(08)62453-5 CrossRefGoogle Scholar
  66. Yamada Y (1968) Occurrence of bromine in plants and soil. Talanta 15(11):1135–1141Google Scholar
  67. Zampella M, Adamo P (2010) Chemical composition and Zn bioavailability of the soil solution extracted from Zn amended variable charge soils. J Environ Sci 22(9):1398–1406. doi: 10.1016/S1001-0742(09)60266-7 CrossRefGoogle Scholar
  68. Zhang P, Ma Y, Zhang Z, He X, Zhang J, Guo Z, Tai R, Zhao Y, Chai Z (2012) Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano 6:9943–9950. doi: 10.1021/nn303543n CrossRefGoogle Scholar
  69. Zharikova EA, Golodnaya OM (2009) Available potassium in volcanic soils of Kamchatka. Eurasian Soil Sci 42(8):850–860. doi: 10.1134/S1064229309080031 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Rosa Marques
    • 1
    • 2
  • Maria Isabel Prudêncio
    • 1
    • 2
  • Maria do Carmo Freitas
    • 1
  • Maria Isabel Dias
    • 1
    • 2
  • Fernando Rocha
    • 2
    • 3
  1. 1.Centro de Ciências e Tecnologias Nucleares (C2TN), ISTUniversidade de LisboaBobadelaPortugal
  2. 2.GeoBioTecUniversidade de AveiroAveiroPortugal
  3. 3.Departamento de GeociênciasUniversidade de AveiroAveiroPortugal

Personalised recommendations