Environmental Science and Pollution Research

, Volume 23, Issue 3, pp 2821–2830 | Cite as

Cumulative effect of zinc oxide and titanium oxide nanoparticles on growth and chlorophyll a content of Picochlorum sp.

  • Layla J. HazeemEmail author
  • Mohammed Bououdina
  • Suad Rashdan
  • Loïc Brunet
  • Christian Slomianny
  • Rabah Boukherroub
Research Article


The use of nanoparticles (NPs) is of increasing significance due to their large potential for various applications. Great attention should be paid on the possible impacts of nanoparticles on the environment as large amounts of them may reach the environment by accident or voluntarily. Marine algae are potential organisms for usage in nanopollution bioremediation in aquatic system, because of their ability to adapt to long exposure to NPs. Thus, it is of prime importance to study the possible interactions of different NPs with microalgae in assessing their potential environmental risks. Most studies on potential environmental effects of ZnO and TiO2 NPs have been performed independently and following the widely accepted, standardized test systems, which had been developed for the characterization of chemicals. In this study, we have examined the cumulative effect of ZnO and TiO2 NPs on Picochlorum sp. in addition to the individual effects of these NPs over 32 days. Our results indicate that the toxicity and availability of NPs to marine algae are reduced by their aggregation and sedimentation. NPs are found to have a negative effect on algal growth and chlorophyll a concentration during the early growth stages. In contrast, the case is reversed during the late growth stages. There is no significant difference between the effect of the NPs when they are used separately and when both ZnO and TiO2 are used together in the test (P > 0.05).


Nanoparticles ZnO TiO2 Picochlorum sp. Viable cells Chlorophyll a 



This work was supported by grant number (11/2012) funded by the Deanship of Scientific Research, University of Bahrain. The authors are grateful to Dr. Wael A. Ismail from the University of Arabian Gulf, Kingdom of Bahrain, to provide us with the NPs, Ms. Hannan Abbas for technical assistance with the SEM and EDS analyses and Ms. Hanna Parvez Butt for her technical assistance.

Supplementary material

11356_2015_5493_MOESM1_ESM.docx (203 kb)
ESM 1 (DOCX 203 kb)


  1. Adams LK, Lyon DY, Mcintosh A, Alvarez PJJ (2006) Comparative toxicity of nano-scale TiO2, SiO2 and ZnO water suspensions. Water Sci Technol 54:327–334CrossRefGoogle Scholar
  2. Agawin NSR, Duarte CM, Agusti S (2000) Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol Oceanogr 45:591–600CrossRefGoogle Scholar
  3. Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56:300–306CrossRefGoogle Scholar
  4. Aruoja V, Dubourguier H-C, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468CrossRefGoogle Scholar
  5. Baker TJ, Tyler CR, Galloway TS (2013) Impacts of metal and metal oxide nanoparticles on marine organisms. Environ Pollut 186:257–271CrossRefGoogle Scholar
  6. Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755CrossRefGoogle Scholar
  7. Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Woods S (2006) Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90:23–32CrossRefGoogle Scholar
  8. Brayner R, Ferrari-Illiou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2010) ZnO nanoparticles: synthesis, characterization and ecotoxicological studies. Langmuir 26:6522–6528CrossRefGoogle Scholar
  9. Callieri C (2008) Picophytoplankton in freshwater ecosystems: the importance of small- sized phototrophs. Freshw Rev 1:1–28CrossRefGoogle Scholar
  10. Cardinale BJ, Bier R, Kwan C (2012) Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater. J Nanoparticle Res 14:913–921CrossRefGoogle Scholar
  11. Chen P, Powell BA, Mortimer M, Ke PC (2012) Adaptive interactions between zinc oxide nanoparticles and Chlorella sp. Environ Sci Technol 46:12178–12185CrossRefGoogle Scholar
  12. Danovaro R, Bongiorni L, Corinaldesi C, Giovannelli D, Damiani E, Astolfi P, Greci L, Pusceddu A (2008) Sunscreens cause coral bleaching by promoting viral infections. Environ Health Perspect 116:441–447Google Scholar
  13. Debnath S, Ghosh U (2011) Equilibrium modeling of single and binary adsorption of Cd (II) and Cu(II) onto agglomerated nanostructured titanium (IV) oxide. Desalination 273:330–342CrossRefGoogle Scholar
  14. Engates KE, Shipley HJ (2011) Adsorption of Pb, Cd, Cu, Zn and Ni to titanium dioxide nanoparticles: effects of particle size, solid concentration and exhaustion. Environ Sci Pollut Res 18:386–395CrossRefGoogle Scholar
  15. Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticles ZnO, bulk ZnO and ZnCl2 to a freshwater microalgae (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490CrossRefGoogle Scholar
  16. Fuller NJ, Campbell C, Allen DJ, Pitt FD, Zwirglmaier K, Gall FL, Vaulot D, Scanlan DJ (2006) Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a PCR biased towards marine algal plastids. Aquat Microb Ecol 43:79–93CrossRefGoogle Scholar
  17. Gong N, Shao K, Feng W, Lin Z, Liang C, Sunn Y (2011) Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere 83:510–516CrossRefGoogle Scholar
  18. Hagfeldt A, Gratzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68CrossRefGoogle Scholar
  19. Handy RD, Von Der Kammer F, Lead JR, Hassellov M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314CrossRefGoogle Scholar
  20. Hartmann NB, Kammer FV, Hofmann T, Baalousha M, Ottofuelling S, Baun A (2010) Algal testing of titanium dioxide nanoparticles—testing considerations, inhibitory effects and modifications of cadmium bioavailability. Toxicology 269:190–197CrossRefGoogle Scholar
  21. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  22. Hong FH, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effects of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279CrossRefGoogle Scholar
  23. Hou W-C, Westerhoff P, Posner JD (2013) Biological accumulation of engineered nanomaterials: a review of current knowledge. Environ Sci 15:103–122Google Scholar
  24. Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environ Sci Pollut Res 13:225–232CrossRefGoogle Scholar
  25. Jeffryes C, Gutu T, Jiao J, Rorrer GL (2008) Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process. ACS Nano 2:2103–2112CrossRefGoogle Scholar
  26. Ji J, Long ZF, Lin DH (2011) Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem Eng J 170:525–530CrossRefGoogle Scholar
  27. Jorgensen EG (1969) Adaptation of plankton alga 4. Light adaptation in different algal species. Physiol Plant 22:1307–1315CrossRefGoogle Scholar
  28. Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851CrossRefGoogle Scholar
  29. Kulacki KJ, Cardinale BJ (2012) Effects of nano-titanium dioxide on freshwater algal population dynamics. PLoS ONE 7(10):e47130CrossRefGoogle Scholar
  30. Lei Z, Su MY, Xiao W, Chao L, Qu CX, Liang C, Hao H, Liu XQ, Hong FS (2007) Effects of nano-anatase on spectral characteristics and distribution of LHCII on the thylakoid membranes of spinach. Biol Trace Elem Res 120:273–283CrossRefGoogle Scholar
  31. Li WKW (1994) Primary productivity of prochlorophytes, cyanobacteria, and eukaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol Oceanogr 39:169–175CrossRefGoogle Scholar
  32. Limbach LK, Yuchun L, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJO (2005) Particle, nanoparticles uptake in human lung fibroblasts: size, aggregation and diffusion at low concentrations. Environ Sci Technol 39:9370–9376CrossRefGoogle Scholar
  33. Lovern SB, Kapler R (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem 25:1132–1137CrossRefGoogle Scholar
  34. Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles—a review. Environ Pollut 172:76–85CrossRefGoogle Scholar
  35. Manzo S, Miglietta ML, Rametta G, Buono S, Francia GD (2013) Toxic effects of ZnO nanoparticles towards marine algae Dunaliella teriolecta. Sci Total Environ 445–446:371–376CrossRefGoogle Scholar
  36. Matranga V, Corsi I (2012) Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches. Mar Environ Res 76:32–40CrossRefGoogle Scholar
  37. Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2: review of in vivo data. Environ Pollut 159:677–684CrossRefGoogle Scholar
  38. Meulenkamp EA (1998) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102:5566–5572CrossRefGoogle Scholar
  39. Miao AJ, Zhang XY, Luo Z, Chen CS, Chin WC, Santschi PH et al (2010) Zinc oxide engineered nanoparticles: dissolution and toxicity to marine phytoplankton. Environ Toxicol Chem 29:2814–2822CrossRefGoogle Scholar
  40. Miglietta ML, Rametta G, Di Francia G, Manzo S, Rocco A, Carotenuto R et al (2011) Characterization of nanoparticles in seawater for toxicity assessment towards aquatic organisms. Lect Notes Electr Eng 91:425–429CrossRefGoogle Scholar
  41. Miller RJ, Lenihan HS, Muller EB, Tseng N, Hanna SK, Keller AA (2010) Impact of metal oxide nanoparticles on marine phytoplankton. Environ Sci Technol 44:7329–7334CrossRefGoogle Scholar
  42. Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32(8):967–976CrossRefGoogle Scholar
  43. Moreira D, Lopez-Garcia P (2002) The molecular ecology of microbial eukaryote, unveils a hidden world. Trends Microbiol 10:31–38CrossRefGoogle Scholar
  44. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386CrossRefGoogle Scholar
  45. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the Nanolevel. Science 311(5761):622–627Google Scholar
  46. Peng X, Palma S, Fisher NS, Wong SS (2011) Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat Toxicol 102:186–196CrossRefGoogle Scholar
  47. Popov AP, Priezzhev AV, Lademann J, Myllylä R (2005) TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens. J Phys D Appl Phys 38:2564–2570CrossRefGoogle Scholar
  48. Quigg A, Chin W-C, Chen C-S, Zhang S, Jiang Y, Miao A-J, Schwehr KA, Xu C, Santschi PH (2013) Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter. ACS Sust Chem Eng 1:686–702CrossRefGoogle Scholar
  49. Raven J (1998) The twelfth Tansley lecture: small is beautiful: the picophytoplankton. Funct Ecol 12:503–513CrossRefGoogle Scholar
  50. Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A (2011) Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicol Environ Saf 74:1180–1187CrossRefGoogle Scholar
  51. Sayes CM, Wahi R, Kurian PA, Lie Y, West JL, Ausman KD, Warheit DB, Colvin VL (2006) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92:174–185CrossRefGoogle Scholar
  52. Scully NM, Cooper WJ, Tranvik LJ (2003) Photochemical effects on microbial activity in natural waters: the interaction of reactive oxygen species and dissolved organic matter. FEMS Microbiol Ecol 46:353–357CrossRefGoogle Scholar
  53. Serpone N, Dondi D, Albini A (2007) Inorganic and organic UV filters: their role and efficacy in sunscreens and sun care products. Inorg Chim Acta 360:794–802CrossRefGoogle Scholar
  54. Smijs TG, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl 4:95–112CrossRefGoogle Scholar
  55. Steele JH (1962) Environmental control of photosynthesis in the sea. Limnol Oceanogr 7:137–150CrossRefGoogle Scholar
  56. Tong T, Wilke CM, Wu J, Binh CTT, Kelly JJ, Gaillard J-F, Gray KA (2015) Combined toxicity of Nano- ZnO and Nano- TiO2: from single- to multinanomaterial systems. Environ Sci Technol 49:8113–8123CrossRefGoogle Scholar
  57. Usui H, Matsui H, Tanabe N, Yanagida S (2004) Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes. J Photochem Photobiol A 164:97–101CrossRefGoogle Scholar
  58. Velzeboer I, Hendriks AJ, Ragas AMJ, Van De Meent D (2008) Aquatic ecotoxicity tests of some nanomaterials. Environ Toxicol Chem 27:1942–1947CrossRefGoogle Scholar
  59. Vohra FC (1966) Determination of photosynthetic pigment in seawater. Monograph on oceanographic methodology I. UNESCO, Paris, p 1–66Google Scholar
  60. Wang J, Jin I, Xue L, Qu Y, Fu H (2008) Enhanced activity of bismuth-compounded TiO2 nanoparticles for photocatalytically degrading rhodamine B solution. J Hazard Mater 160:208–212CrossRefGoogle Scholar
  61. Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345CrossRefGoogle Scholar
  62. Wong SWY, Leung PTY, Djurisic AB, Leung KMY (2010) Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal Bioanal Chem 396:609–618CrossRefGoogle Scholar
  63. Yang W-W, Li Y, Miao A-J, Yang L-Y (2012a) Toxicity as affected by bare TiO2 nanoparticles and their bulk counterpart. Ecotoxicol Environ Saf 85:44–51CrossRefGoogle Scholar
  64. Yang W-W, Miao A-J, Yang L-Y (2012b) Cd2+ toxicity to a green alga Chlamydomonas reinhardtii as influenced by its adsorption on TiO2 engineered nanoparticles. PLoS One 7:e32300CrossRefGoogle Scholar
  65. Zheng L, Hong FS, Lu SP, Lui C (2005) Effect of nano-TiO2 on strength of naturally and growth aged seeds of spinach. Biol Trace Elem Res 104:83–91CrossRefGoogle Scholar
  66. Zhou H, Wang X, Zhou Y, Yao H, Ahmad F (2014) Evaluation of the toxicity of ZnO nanoparticles to Chlorella vulgaris by use of the chiral perturbation approach. Anal Bioanal Chem 406:3689–3695CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Layla J. Hazeem
    • 1
    Email author
  • Mohammed Bououdina
    • 2
    • 3
  • Suad Rashdan
    • 4
  • Loïc Brunet
    • 5
  • Christian Slomianny
    • 6
  • Rabah Boukherroub
    • 7
  1. 1.Department of Biology, College of ScienceUniversity of BahrainManamaKingdom of Bahrain
  2. 2.Nanotechnology CentreUniversity of BahrainManamaKingdom of Bahrain
  3. 3.Department of Physics, College of ScienceUniversity of BahrainManamaKingdom of Bahrain
  4. 4.Department of Chemistry, College of ScienceUniversity of BahrainManamaKingdom of Bahrain
  5. 5.BioImaging Center of LilleVilleneuve d’Ascq CedexFrance
  6. 6.Inserm U1003, Laboratoire de Physiologie CellulaireVilleneuve d’Ascq CedexFrance
  7. 7.Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN)CNRS UMR 8520Villeneuve d’Ascq CedexFrance

Personalised recommendations