Environmental Science and Pollution Research

, Volume 23, Issue 3, pp 2684–2692 | Cite as

Removal of Cd, Cu, Pb, and Zn from aqueous solutions by biochars

  • M. E. Doumer
  • A. Rigol
  • M. Vidal
  • A. S. Mangrich
Research Article


Sorption and desorption of heavy metals (Cd, Cu, Pb, and Zn) was evaluated in biochars derived from sugarcane bagasse (SB), eucalyptus forest residues (CE), castor meal (CM), green coconut pericarp (PC), and water hyacinth (WH) as candidate materials for the treatment of contaminated waters and soils. Solid–liquid distribution coefficients depended strongly on the initial metal concentration, with K d,max values mostly within the range 103–104 L kg−1. For all biochars, up to 95 % removal of all the target metals from water was achieved. The WH biochar showed the highest K d,max values for all the metals, especially Cd and Zn, followed by CE (for Cd and Pb) and PC (for Cd, Pb, and Zn). Sorption data were fitted satisfactorily with Freundlich and linear models (in the latter case, for the low concentration range). The sorption appeared to be controlled by cationic exchange, together with specific surface complexation at low metal concentrations. The low desorption yields, generally less than 5 %, confirmed that the sorption process was largely irreversible and that the biochars could potentially be used in decontamination applications.


Biochar Waste biomass Slow pyrolysis Metal removal Sorption Desorption 



This research was supported by the Spanish Ministerio de Economía y Competitividad (Project CTM2011-27211 and CTM2014-55191) and the Generalitat de Catalunya (AGAUR 2014SGR1277). The authors are indebted to CNPq and CAPES for a doctorate scholarship (MED) and research scholarships (JBA, ASM, AWJ, and EHN).

The authors wish to thank Melhoramentos S.A. for supplying the sugar cane bagasse and Granfor for supplying the eucalyptus forest residues.

Supplementary material

11356_2015_5486_MOESM1_ESM.docx (78 kb)
ESM 1 (DOCX 78 kb)


  1. Abdel-Fattah TM, Mahmoud ME, Ahmed SB, Huff MD, Lee JW, Kumar S (2015) Biochar from woody biomass for removing metal contaminants and carbon sequestration. J Ind Eng Chem 22:103–109CrossRefGoogle Scholar
  2. Ahmad M, Usman ARA, Lee SS, Kim SC, Joo JH, Yang JE, Ok YS (2012) Eggshell and coral wastes as low cost sorbents for the removal of Pb2+, Cd2+ and Cu+2 from aqueous solutions. J Ind Eng Chem 18:198–204. doi: 10.1016/j.jiec.2011.11.013 CrossRefGoogle Scholar
  3. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33. doi: 10.1016/j.chemosphere.2013.10.071 CrossRefGoogle Scholar
  4. Bergier I, Salis SM, Miranda CHB, Ortega E, Luengo CA (2012) Biofuel production from water hyacinth in the Pantanal wetland. Ecohydrol Hydrobiol 12:77–84. doi: 10.2478/v10104-011-0041-4 CrossRefGoogle Scholar
  5. Bogusz A, Oleszczuk P, Dobrowolski R (2015) Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water. Bioresour Technol 196:540–549. doi: 10.1016/j.biortech.2015.08.006 CrossRefGoogle Scholar
  6. Cao X, Ma L, Liang Y, Cao B, Harris W (2011) Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ Sci Technol 45:4884–4889. doi: 10.1021/es103752u CrossRefGoogle Scholar
  7. Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride MB, Hay AG (2011) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol 102:8877–8884. doi: 10.1016/j.biortech.2011.06.078 CrossRefGoogle Scholar
  8. Christensen JB, Botma JJ, Christensen TH (1999) Complexation of Cu and Pb by DOC in polluted groundwater: a comparison of experimental data and predictions by computer speciation MODELS (WHAM and MINTEQA2). Water Res 33:3231–3238. doi: 10.1016/S0043-1354(99)00020-2 CrossRefGoogle Scholar
  9. Coles CA, Yong RN (2006) Use of equilibrium and initial metal concentrations in determining Freundlich isotherms for soils and sediments. Eng Geol 85:19–25. doi: 10.1016/j.enggeo.2005.09.023 CrossRefGoogle Scholar
  10. Ding W, Dong X, Ime IM, Ma LQ (2014) Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere 105:68–74. doi: 10.1016/j.chemosphere.2013.12.042 CrossRefGoogle Scholar
  11. Essington M (2004) Soil and water chemistry: an integrative approach. CRC Press LLC, LondonGoogle Scholar
  12. Fiol N, Villaescusa I, Martínez M, Miralles N, Poch J, Serarols J (2006) Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep Purif Technol 50:132–140. doi: 10.1016/j.seppur.2005.11.016 CrossRefGoogle Scholar
  13. Frišták V, Pipíška M, Lesný J, Soja G, Friesl-Hanl W, Packová A (2015) Utilization of biochar sorbents for Cd2+, Zn2+, and Cu2+ ions separation from aqueous solutions: comparative study. Environ Monit Assess 187:1–16. doi: 10.1007/s10661-014-4093-y CrossRefGoogle Scholar
  14. Gell K, van Groenigen J, Cayuela ML (2011) Residues of bioenergy production chains as soil amendments: immediate and temporal phytotoxicity. J Hazard Mater 186:2017–2025. doi: 10.1016/j.jhazmat.2010.12.105 CrossRefGoogle Scholar
  15. Guo G, Zhou Q, Ma L (2006) Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess 116:513–528. doi: 10.1007/s10661-006-7668-4 CrossRefGoogle Scholar
  16. Han Y, Boateng AA, Qi PX, Lima IM, Chang J (2013) Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. J Environ Manag 118:196–204. doi: 10.1016/j.jenvman.2013.01.001 CrossRefGoogle Scholar
  17. Hinz C (2001) Description of sorption data with isotherm equations. Geoderma 99:225–243. doi: 10.1016/S0016-7061(00)00071-9 CrossRefGoogle Scholar
  18. IBÁ (2015) Brazilian Tree Industry. (accessed July 2015)
  19. IBGE (2015) Systematic Survey of Agricultural Production. Brazilian Institute of Geography and Statistics. (accessed July 2015)
  20. Inyang M, Gao B, Yao Y, Xue Y, Zimmerman AR, Pullammanappallil P, Cao X (2012) Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour Technol 110:50–56. doi: 10.1016/j.biortech.2012.01.072 CrossRefGoogle Scholar
  21. Khokhotva O, Waara S (2010) The influence of dissolved organic carbon on sorption of heavy metals on urea-treated pine bark. J Hazard Mater 173:689–696. doi: 10.1016/j.jhazmat.2009.08.149 CrossRefGoogle Scholar
  22. Kim MS, Min HG, Koo N, Park J, Lee SH, Bak GI, Kim JG (2014) The effectiveness of spent coffee grounds and its biochar on the amelioration of heavy metals-contaminated water and soil using chemical and biological assessments. J Environ Manag 146:124–130. doi: 10.1016/j.jenvman.2014.07.001 CrossRefGoogle Scholar
  23. Kołodyńska D, Wnetrzak R, Leahy JJ, Hayes MHB, Kwapinski W, Hubicki Z (2012) Kinetic and adsorptive characterization of biochar in metal ions removal. Chem Eng J 197:295–305. doi: 10.1016/j.cej.2012.05.025 CrossRefGoogle Scholar
  24. Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strateg Glob Chang 11:403–427. doi: 10.1007/s11027-005-9006-5 CrossRefGoogle Scholar
  25. Mohan D, Pittman CU, Bricka M, Smith F, Yancey B, Mohammad J, Steele PH, Alexandre-Franco MF, Gómez-Serrano V, Gong H (2007) Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid Interface Sci 310:57–73. doi: 10.1016/j.jcis.2007.01.020 CrossRefGoogle Scholar
  26. Mohan D, Sarswat A, Ok YS, Pittman CU Jr (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour Technol 160:191–202. doi: 10.1016/j.biortech.2014.01.120 CrossRefGoogle Scholar
  27. Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207. doi: 10.1016/S0013-7952(00)00101-0 CrossRefGoogle Scholar
  28. Pellera F-M, Giannis A, Kalderis D, Anastasiadou K, Stegmann R, Wang JY, Gidarakos E (2012) Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products. J Environ Manag 96:35–42. doi: 10.1016/j.jenvman.2011.10.010 CrossRefGoogle Scholar
  29. Regmi P, Garcia Moscoso JL, Kumar S, Cao X, Mao J, Schafran G (2012) Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J Environ Manag 109:61–69. doi: 10.1016/j.jenvman.2012.04.047 CrossRefGoogle Scholar
  30. Sastre J, Rauret G, Vidal M (2007) Sorption–desorption tests to assess the risk derived from metal contamination in mineral and organic soils. Environ Int 33:246–256. doi: 10.1016/j.envint.2006.09.017 CrossRefGoogle Scholar
  31. Shaheen SM, Eissa FI, Ghanem KM, Gamal El-Din HM, Al Anany FS (2013) Heavy metals removal from aqueous solutions and wastewaters by using various byproducts. J Environ Manag 128:514–521. doi: 10.1016/j.jenvman.2013.05.061 CrossRefGoogle Scholar
  32. Silva JCJS, Ciminelli VST (2009) Tratamiento de las muestras de agua, suelos y sedimentos para determinación de arsénico. In: Litter MI, Armienta MA (eds) IBEROARSEN Metodologías Analíticas para la Determinación y Especiación de Arsénico en Aguas y Suelos, 1st edn. CYTED, Argentina, p 242Google Scholar
  33. Tong X, Li J, Yuan J, Xu R (2011) Adsorption of Cu(II) by biochars generated from three crop straws. Chem Eng J 172:828–834. doi: 10.1016/j.cej.2011.06.069 CrossRefGoogle Scholar
  34. Trakal L, Sigut R, Sillerová H, Faturíková D, Komárek M (2014) Copper removal from aqueous solution using biochar: effect of chemical activation. Arab J Chem 7:43–52. doi: 10.1016/j.arabjc.2013.08.001 CrossRefGoogle Scholar
  35. U.S. EPA—The United States Environmental Protection Agency (2011) Ground water and drinking water, current drinking water standards, EPA 816-F-02. U.S. EPAGoogle Scholar
  36. Venegas A, Rigol A, Vidal M (2015) Viability of organic wastes and biochars as amendments for the remediation of heavy metal-contaminated soils. Chemosphere 119:190–198. doi: 10.1016/j.chemosphere.2014.06.009 CrossRefGoogle Scholar
  37. Wang Z, Liu G, Zheng H, Li F, Ngo HH, Guo W, Liu C, Chen L, Xing B (2015a) Investigating the mechanisms of biochar’s removal of lead from solution. Bioresour Technol 177:308–317. doi: 10.1016/j.biortech.2014.11.077 CrossRefGoogle Scholar
  38. Wang S, Gao B, Zimmerman AR, Li Y, Ma L, Harris WG, Migliaccio KW (2015b) Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Chemosphere 134:257–262. doi: 10.1016/j.chemosphere.2015.04.062 CrossRefGoogle Scholar
  39. Zhang F, Wang X, Yin D, Peng B, Tan C, Liu Y, Tan X, Wu S (2015) Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). J Environ Manag 153:68–73. doi: 10.1016/j.jenvman.2015.01.043 CrossRefGoogle Scholar
  40. Zhao L, Cao X, Mašek O, Zimmerman A (2013) Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J Hazard Mater 257:1–9. doi: 10.1016/j.jhazmat.2013.04.015 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • M. E. Doumer
    • 1
  • A. Rigol
    • 2
  • M. Vidal
    • 2
  • A. S. Mangrich
    • 1
  1. 1.Department of ChemistryFederal University of Paraná-UFPRCuritibaBrazil
  2. 2.Department of Analytical ChemistryUniversity of BarcelonaBarcelonaSpain

Personalised recommendations