Environmental Science and Pollution Research

, Volume 23, Issue 2, pp 1833–1840 | Cite as

Bioaccumulation of pathogenic bacteria and amoeba by zebra mussels and their presence in watercourses

  • R. MosteoEmail author
  • P. Goñi
  • N. Miguel
  • J. Abadías
  • P. Valero
  • M. P. Ormad
Research Article


Dreissena polymorpha (the zebra mussel) has been invading freshwater bodies in Europe since the beginning of the nineteenth century. Filter-feeding organisms can accumulate and concentrate both chemical and biological contaminants in their tissues. Therefore, zebra mussels are recognized as indicators of freshwater quality. In this work, the capacity of the zebra mussel to accumulate human pathogenic bacteria and protozoa has been evaluated and the sanitary risk associated with their presence in surface water has also been assessed. The results show a good correlation between the pathogenic bacteria concentration in zebra mussels and in watercourses. Zebra mussels could therefore be used as an indicator of biological contamination. The bacteria (Escherichia coli, Enterococcus spp., Pseudomonas spp., and Salmonella spp.) and parasites (Cryptosporidium oocysts and free-living amoebae) detected in these mussels reflect a potential sanitary risk in water.


Zebra mussel Bioaccumulation Pathogenic bacteria Amoeba 



This work was financed by DGA-FSE Research Teams T33 and B124 and the University of Zaragoza (Project JIUZ-2013-TEC-14)


  1. Anzano J, Lasheras R, Bonilla B, Bonilla A, Lanaja J, Cia I, Peribañez J, Gracia-Salinas ML, Anwar J, Shafique U (2011) Determination of trace metals by voltaperometry in zebra mussel employed as environmental bio-indicator. Green Chem Lett Rev 4:261–267CrossRefGoogle Scholar
  2. Abreu-Acosta N, Vera L (2011) Occurrence and removal of parasites, enteric bacteria and faecal contamination indicators in wastewater natural reclamation systems in Tenerife-Canary Islands, Spain. Ecol Eng 37(3):496–503CrossRefGoogle Scholar
  3. Bervoets L, Voets J, Che S, Covaci A, Schepens P, Blust R (2004) Comparison of accumulation of micropollutants between indigenous and transplanted zebra mussels. Environ Toxicol Chem 23:1973–1983CrossRefGoogle Scholar
  4. Binelli A, Magni S, Soave C, Marazzi F, Zuccato E, Castiglioni S, Parolini M, Mezzanotte V (2014) The biofiltration process by the bivalve D. polymorpha for the removal of some pharmaceuticals and drugs of abuse from civil wastewaters. Ecol Eng 71:710–721CrossRefGoogle Scholar
  5. Camusso M, Balestrini R, Binelli A (2001) Use of zebra mussel to asses trace metal contamination in the largest Italian subalpine lakes. Chemosphere 44:263–270CrossRefGoogle Scholar
  6. CHE (2002) Protocol for disinfecting boats in bodies of water infected with the zebra mussel, Internal document,
  7. CHE (2006) Sampling and identification of larvae of zebra mussel, Internal document,
  8. Claudi R, Mackie GL (1994) Practical manual for zebra mussels monitoring and control. Lewis, Boca RatonGoogle Scholar
  9. Cleresci LS, Greenberg AE, Trussell RR (2005) Standard methods for the examination of waste water, 21st edn. American Public Health Association, MarylandGoogle Scholar
  10. García A, Goñi P, Clavel A, Lobez S, Fernández MT, Ormad MP (2011) Potentially pathogenic free-living amoebae (FLA) isolated in Spanish wastewater treatment plants. Environ Microbiol Rep 35(5):622–626CrossRefGoogle Scholar
  11. Graczyk TK, Marcogliese DJ, de Lafontaine Y, Da Silva AJ, Mhangami-Ruwende B, Pieniazek NJ (2001) Cryptosporidium parvum oocysts in zebra mussels (Dresissena polymorpha): evidence from the St. Lawrence River. Parasitol Res 87:231–234CrossRefGoogle Scholar
  12. Graczyk TK, Conn DB, Lucy F, Minchin D, Tamang L, Moura L, DaSilva AJ (2004) Human waterborne parasites in zebra mussels (Dreissena polymorpha) from the Shannon River drainage area, Ireland. Parasitol Res 93:385–391CrossRefGoogle Scholar
  13. Frischer ME, Parsons RH, Waitkus K, Vathanodorn K, Nierzwicki-Bauer SA (1996) Bacteria as direct food source for zebra mussels (D. polymorpha). Final reports of the Tibor, T. Polgar Fellowship Program. Hudson River Foundation, New YorkGoogle Scholar
  14. Lalaguna C, Anadón A (2008) The zebra mussel invasion in Spain and navigation rules. Aquat Invasions 3:315–324CrossRefGoogle Scholar
  15. Levantesi C, La Mantia R, Masciopinto C, Böckelmann U, Neus Ayuso-Gabella M, Salgot M, Tandoi V, Van Houtte E, Wintgens T, Grohmann E (2010) Quantification of pathogenic microorganisms and microbial indicators in three wastewater reclamation and managed aquifer recharge facilities in Europe. Sci Total Environ 408(21):4923–4930CrossRefGoogle Scholar
  16. Loveday HP, Wilson JA, Kerr K, Pitchers R, Walker JT, Browne J (2014) Effective concentration an detection of Crystosporidum. Giardia and the mocrosporidia from environmental matrices. J Hosp Infect. doi: 10.1016/j.jhin.2013.09.010.Epub Google Scholar
  17. Magni S, Parolini M, Soave C, Marazzi F, Mezzanotte V, Binelli A (2015) Removal of metallic elements from real wastewater using zebra mussel bio-filtration process. J Environ Chem Eng 3:915–921CrossRefGoogle Scholar
  18. Minguez L, Devin S, Molloy DP, Guérold F, Giambérini L (2011) Zebra mussels (Dreissena polymorpha) parasites: potentially useful bioindicators of freshwater quality? Water Res 45:665–673CrossRefGoogle Scholar
  19. Molleda P, Blanco I, Ansola G, Luis E (2008) Removal of wastewater pathogen indicators in a constructed wetland in León, Spain. Ecol Eng 33:252–257CrossRefGoogle Scholar
  20. Moss JA, Gordy J, Snyder RA (2014) Effective concentration and detection of Cryptosporidium, Giardia and the microporidia from environmental matrices. J Pathog. doi: 10.1155/2014/408204 Google Scholar
  21. Mosteo R, Ormad MP, Goñi P, Rodríguez-Chueca J, Gacía A, Clavel A (2013) Identification of pathogen bacteria and protozoa in treated urban wastewaters discharged in the Ebro River (Spain): water reuse possibilities. Water Sci Technol 68(3):575–583CrossRefGoogle Scholar
  22. Moulin L, Richard F, Stefania S, Goulet M, Gosselin S, Goncalves A, Rocher V, Paffoni C, Dumètre A (2010) Contribution of treated wastewater to the microbiological quality of Seine river in Paris. Water Res 44:5222–5231CrossRefGoogle Scholar
  23. O’Neil CR (1996) The zebra mussel. Impact and control. Cornell Cooperative Extension, Information Bulletin, 238. New York Sea Grant, Cornell University, State University of New YorkGoogle Scholar
  24. Palos Ladeiro M, Aubert D, Villena I, Geffard A, Bigot A (2014) Bioaccumulation of human waterborne protozoa by zebra mussel (Dreissena polymorpha): interest for water biomonitoring. Water Res 48:148–155CrossRefGoogle Scholar
  25. Parolini M, Binelli (2014) Temporal trends of polycyclic aromatic hydrocarbons (PAHs) in Dreissena polymorpha specimens from lake Maggiore. Environ Sci Pollut Res 21:7006–7023CrossRefGoogle Scholar
  26. Rutzke M, Gutenmann W, Lisk D, Mills E (2000) Toxic and nutrient element concentrations in soft tissues of zebra and quagga mussels from lakes Erie and Ontario. Chemosphere 40:1353–1356CrossRefGoogle Scholar
  27. Selegean JPW, Kusserow R, Patel R, Heidtke TM, Ram JL (2001) Using zebra mussels to monitor Escherichia coli in environmental waters. J Environ Qual 30:171–179CrossRefGoogle Scholar
  28. Shannon KE, Lee DY, Trevors JT, Beaudette LA (2007) Application of real-time quantitative PCR for the detection of selected bacterial pathogens during municipal wastewater treatment. Sci Total Environ 382(1):121–129CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • R. Mosteo
    • 1
    Email author
  • P. Goñi
    • 2
  • N. Miguel
    • 1
  • J. Abadías
    • 1
  • P. Valero
    • 1
  • M. P. Ormad
    • 1
  1. 1.Department of Chemical Engineering and Environmental TechnologiesEINA, University of ZaragozaZaragozaSpain
  2. 2.Area of Parasitology, Department of Microbiology, Preventive Medicine and Public Health, Faculty of MedicineUniversity of ZaragozaZaragozaSpain

Personalised recommendations