Environmental Science and Pollution Research

, Volume 23, Issue 1, pp 23–35 | Cite as

Potential of barrage fish ponds for the mitigation of pesticide pollution in streams

  • Juliette Gaillard
  • Marielle Thomas
  • Angélique Lazartigues
  • Bénilde Bonnefille
  • Christelle Pallez
  • Xavier Dauchy
  • Cyril Feidt
  • Damien Banas
Crop protection and environmental health: legacy management and new concepts


Barrage fishponds may represent a significant surface water area in some French regions. Knowledge on their effect on water resources is therefore necessary for the development of appropriate water quality management plans at the regional scale. Although there is much information on the nutrient removal capacity of these water bodies, little attention has been paid to other agricultural contaminants such as pesticides. The present paper reports the results of a 1-year field monitoring of pesticide concentrations and water flows measured upstream and downstream from a fishpond in North East France to evaluate its capacity in reducing pesticide loads. Among the 42 active substances that had been applied on the fishpond’s catchment, seven pesticides (five herbicides, two fungicides) were studied. The highest concentration in the inflow to the pond was 26.5 μg/L (MCPA), while the highest concentration in pond outflow was 0.54 μg/L (prosulfocarb). Removal rates of dissolved pesticides in the fishpond ranged from 0-8 % (prosulfocarb) to 100 % (clopyralid). Although not primarily designed for the treatment of diffuse sources of pesticides, the studied fishpond had the potential to do so.


Fish ponds Pesticides Mitigation Agricultural runoff Wetland Water pollution 



The authors are grateful to the “Agence de l’Eau Rhin-Meuse,” the “Conseil Général de Moselle,” the “Région Lorraine,” and the “Zone Atelier Moselle” for their financial support to this project. We sincerely thank L. Pasquini, C. Hollard, and A. Iuretig for their countless help. We acknowledge the cooperation of the fish farmers and of the farmers who took part in this investigation because they believe that research and collaborations with scientists are an essential step to reconcile agricultural production and preservation of water resources.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11356_2015_5378_MOESM1_ESM.docx (1.6 mb)
ESM 1 (DOCX 1,659 kb)


  1. Agreste (2013) Atlas de l’agriculture, de l’agroalimentaire et de la forêt en Lorraine. Direction Régionale de l’Alimentation, de l’Agriculture et de la Forêt Lorraine - Service Régional de l’Information Statistique et EconomiqueGoogle Scholar
  2. Al Housari F, Höhener P, Chiron S (2011) Factors responsible for rapid dissipation of acidic herbicides in the coastal lagoons of the Camargue (Rhône River Delta, France). Sci Total Environ 409:582–587. doi: 10.1016/j.scitotenv.2010.10.036 CrossRefGoogle Scholar
  3. American Public Health Association (1998) Standard methods for the examination of water and wastewater, 16th ed, Method 209c, p. 96, Washington, DCGoogle Scholar
  4. Aubin J, Rey-Valette H, Mathé S, Wilfart A, Legendre M, Slembrouck J, Chia E, Masson G, Callier M, Blancheton JP, Tocqueville A, Caruso D, Fontaine P (2014) Guide for implementing ecological intensification of aquaculture systems. INRA, Rennes, France, 131 p. ISBN: 978-2-9547969-1Google Scholar
  5. Avnimelech Y, Ritvo G (2003) Shrimp and fish pond soils: processes and management. Aquaculture 220:549–567. doi: 10.1016/S0044-8486(02)00641-5 CrossRefGoogle Scholar
  6. Banas D, Masson G, Leglize L, Pihan JC (2002) Discharge of sediments, nitrogen (N) and phosphorus (P) during the emptying of extensive fishponds: effect of rain-fall and management practices. Hydrobiologia 472:29–38. doi: 10.1023/A:1016360915185 CrossRefGoogle Scholar
  7. Banas D, Masson G, Leglize L, Usseglio-Polatera P, Boyd CE (2008) Assessment of sediment concentration and nutrient loads in effluents drained from extensively managed fishponds in France. Environ Pollut 152:679–685. doi: 10.1016/j.envpol.2007.06.058 CrossRefGoogle Scholar
  8. Billard R (2010) Derrière chez moi, y'a un étang - Les étangs, textes d'hier, regards d'aujourd'hui et de demain. Editions Quae, 304 pGoogle Scholar
  9. Blankenberg AGB, Braskerud B, Haarstad K (2006) Pesticide retention in two small constructed wetlands: treating non-point source pollution from agriculture runoff. Int J Environ AnCh 86:225–231. doi: 10.1080/03067310500247470 CrossRefGoogle Scholar
  10. Boithias L, Sauvage S, Taghavi L, Merlina G, Probst J-L, Sánchez Pérez JM (2011) Occurrence of metolachlor and trifluralin losses in the Save river agricultural catchment during floods. J Hazard Mater 196:210–219. doi: 10.1016/j.jhazmat.2011.09.012 CrossRefGoogle Scholar
  11. Boyd CE, Gross A (2000) Water use and conservation for inland aquaculture ponds. Fish Manag Ecol 7:55–63. doi: 10.1046/j.1365-2400.2000.00181.x CrossRefGoogle Scholar
  12. Braskerud B, Haarstad K (2003) Screening the retention of thirteen pesticides in a small constructed wetland. Water Sci Technol 48:267–274Google Scholar
  13. Brethes A, 1976. Carte des stations de la forêt domaniale du Römersberg (Moselle). Technical report. INRA, Nancy.Google Scholar
  14. Budd R, O’Geen A, Goh KS, Bondarenko S, Gan J (2009) Efficacy of constructed wetlands in pesticide removal from tailwaters in the Central Valley, California. Environ Sci Technol 43:2925–2930. doi: 10.1021/es802958q CrossRefGoogle Scholar
  15. Chary K (2013) Analyse écosystémique des étangs, cas de la Lorraine. Master’s thesis. ISARA, LyonGoogle Scholar
  16. Cheng S, Vidakovic-Cifrek Ž, Grosse W, Karrenbrock F (2002) Xenobiotics removal from polluted water by a multifunctional constructed wetland. Chemosphere 48:415–418. doi: 10.1016/S0045-6535(02)00097-8
  17. Clavet R (1995) Modelling pesticide leaching in soils; main aspects and main difficulties. Eur J Agron 4(4):473–484CrossRefGoogle Scholar
  18. Cohn TA (1995) Recent advances in statistical methods for the estimation of sediment and nutrient transport in rivers. Rev Geophys 33:1117–1123. doi: 10.1029/95RG00292 CrossRefGoogle Scholar
  19. European Environment Agency (2005) Land use in the EU-25 Available at: Accessed 15 May 2014
  20. European Environment Agency (2012) European waters—current status and future challenges—a synthesis. Available at: Accessed 10 June 2014
  21. Falb LN, Bridges DC, Smith AE (1990) Effects of pH and adjuvants on clethodim photodegradation. J Agric Food Chem 38:875–878. doi: 10.1021/jf00093a060 CrossRefGoogle Scholar
  22. French Geological Survey (2001) Carte géologique de Château Salins au 1/50 000. BRGM Editions, OrléansGoogle Scholar
  23. French Ministry of Ecology, Sustainable Development and Energy (2013) Contamination des cours d'eau par les pesticides en 2011, Department of the Commissioner-General for Sustainable Development, 7 pGoogle Scholar
  24. French National Agency for Water and Aquatic Environments (2010) Why is it needed to restore river continuity? Available at: Accessed 2 July 2014
  25. Garmouma M, Blanchard M, Chesterikoff A, Ansart P, Chevreuil M (1997) Seasonal transport of herbicides (triazines and phenylureas) in a small stream draining an agricultural basin: Mélarchez (France). Water Res 31:1489–1503. doi: 10.1016/S0043-1354(96)00400-9 CrossRefGoogle Scholar
  26. Gennari M, Ambrosoli R, Nègre M, Minati JL (2002) Bioavailability and biodegradation of prosulfocarb in soil. J Environ Sci Health B 37(4):297–305. doi: 10.1081/PFC-120004471 CrossRefGoogle Scholar
  27. Gómez-Gutiérrez AI, Jover E, Bodineau L, Albaigés J, Bayona JM (2006) Organic contaminant loads into the Western Mediterranean Sea: estimate of Ebro River inputs. Chemosphere 65:224–236. doi: 10.1016/j.chemosphere.2006.02.058 CrossRefGoogle Scholar
  28. Gregroire C, Payraudeau S, Domange N (2010) Use and fate of 17 pesticides applied on a vineyard catchment. Int J Environ Anal Chem 90:406–420. doi: 10.1080/03067310903131230 CrossRefGoogle Scholar
  29. Guo L, Nordmark CE, Spurlock FC, Johnson BR, Li LL, Lee JM, Goh KS (2004) Characterizing dependence of pesticide load in surface water on precipitation and pesticide use for the Sacramento River watershed. Environ Sci Technol 38:3842–3852. doi: 10.1021/es0351241 CrossRefGoogle Scholar
  30. Haarstad K, Braskerud BC (2003) Screening the retention of thirteen pesticides in a small constructed wetland. Water Sci Technol 48:267–274Google Scholar
  31. Holvoet KMA, Seuntjens P, Vanrolleghem PA (2007) Monitoring and modeling pesticide fate in surface waters at the catchment scale. Ecol Model 209:53–64. doi: 10.1016/j.ecolmodel.2007.07.030 CrossRefGoogle Scholar
  32. Hu J, Wang T, Long J, Chen Y (2014) Hydrolysis, aqueous photolysis and soil degradation of fluroxypyr. Int J Environ Anal Chem 94(3):211–222. doi: 10.1080/03067319.2013.803283 CrossRefGoogle Scholar
  33. Johnes PJ (2007) Uncertainties in annual riverine phosphorus load estimation: impact of load estimation methodology, sampling frequency, baseflow index and catchment population density. J Hydrol 332:241–258. doi: 10.1016/j.jhydrol.2006.07.006 CrossRefGoogle Scholar
  34. Kadlec RH (2005) Constructed wetlands to remove nitrate. In: Dunne EJ, Reddy KR, Carton OT (eds) Nutrient management in agricultural watersheds a wetlands solution. Wageningen Academic Publishers, The NetherlandsGoogle Scholar
  35. Kreuger J (1998) Pesticides in stream water within an agricultural catchment in southern Sweden, 1990–1996. Sci Total Environ 216:227–251. doi: 10.1016/S0048-9697(98)00155-7 CrossRefGoogle Scholar
  36. Lagaly G (2001) Pesticide–clay interactions and formulations. Appl Clay Sci Pesticide-Clay Interact Formulat 18:205–209. doi: 10.1016/S0169-1317(01)00043-6 CrossRefGoogle Scholar
  37. Lazartigues A (2010) Pesticides et polyculture d’étang: de l’épandage sur le bassin versant aux résidus dans la chair de poisson. Ph.D. Thesis, Lorraine UniversityGoogle Scholar
  38. Lazartigues A, Banas D, Feidt C, Brun-Bellut J, Thomas M (2012) Pesticide pressure and fish farming in barrage pond in Northeastern France. Part I: site characterization and water quality. Environ Sci Pollut Res 19:2802–2812. doi: 10.1007/s11356-012-0784-5 CrossRefGoogle Scholar
  39. Lazartigues A, Banas D, Feidt C, Brun-Bellut J, Gardeur JN, Le Roux Y, Thomas M (2013a) Pesticide pressure and fish farming in barrage pond in northeastern France. Part III: how management can affect pesticide profiles in edible fish? Environ Sci Pollut Res 20:126–135. doi: 10.1007/s11356-012-0824-1 CrossRefGoogle Scholar
  40. Lazartigues A, Thomas M, Cren-Olivé C, Brun-Bellut J, Le Roux Y, Banas D, Feidt C (2013b) Pesticide pressure and fish farming in barrage pond in Northeastern France. Part II: residues of 13 pesticides in water, sediments, edible fish and their relationships. Environ Sci Pollut Res 20:117–125. doi: 10.1007/s11356-012-1167-7 CrossRefGoogle Scholar
  41. Le Gall AC, Chavane L, Chatelier JY (2013) Analyse des données de la BNV-D sur la période 2008-2011—rapport finalGoogle Scholar
  42. Le Quéré G, Marcel J (1999) La pisciculture d’étang française. Rapport de l’Institut Technique de l’Aviculture (ITAVI), ParisGoogle Scholar
  43. Lehmann RG, Lickly LS, Lardie TS, Miller JH, Baldwin WS (1991) Fate of fluroxypyr in soil. III: significance of metabolites to plants. Weed Res 31:347–355CrossRefGoogle Scholar
  44. Lehmann RG, Miller RG, Cleveland CB (1993) Fate of fluroxypyr in water. Weed Res 33:197–204CrossRefGoogle Scholar
  45. Leu C, Singer H, Stamm C, Muller C, Schwarzenbach RP (2004) Simultaneous assessment of sources, processes, and factors influencing herbicide losses to surface waters in a small agricultural catchment. Environ Sci Technol 38:3827–3834. doi: 10.1021/es0499602 CrossRefGoogle Scholar
  46. Littlewood IG (1995) Hydrological regimes, sampling strategies, and assessment of errors in mass load estimates for United Kingdom rivers. Environ Int 21:211–220. doi: 10.1016/0160-4120(95)00011-9 CrossRefGoogle Scholar
  47. Lizotte RE, Shields FD, Murdock JN, Kröger R, Knight SS (2012) Mitigating agrichemicals from an artificial runoff event using a managed riverine wetland. Sci Total Environ 427–428:373–381. doi: 10.1016/j.scitotenv.2012.04.025 CrossRefGoogle Scholar
  48. Loos R, Gawlik BM, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2009) EU-wide survey of polar organic persistent pollutants in European river waters. Environ Pollut 157:561–568. doi: 10.1016/j.envpol.2008.09.020 CrossRefGoogle Scholar
  49. Lorraine Chamber of Agriculture (2005) La pisciculture d’étang. Available at: Accessed 20 June 2014
  50. Maillard E, Imfeld G (2014) Pesticide mass budget in a stormwater wetland. Environ Sci Technol 48:8603–8611. doi: 10.1021/es500586x CrossRefGoogle Scholar
  51. Maillard E, Payraudeau S, Faivre E, Grégoire C, Gangloff S, Imfeld G (2011) Removal of pesticide mixtures in a stormwater wetland collecting runoff from a vineyard catchment. Sci Total Environ 409:2317–2324. doi: 10.1016/j.scitotenv.2011.01.057 CrossRefGoogle Scholar
  52. Matamoros V, Garcia J, Bayona JM (2008) Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent. Water Res 42:653–660. doi: 10.1016/j.watres.2007.08.016 CrossRefGoogle Scholar
  53. Matamoros V, Arias CA, Nguyen LX, Salvadó V, Brix H (2012) Occurrence and behavior of emerging contaminants in surface water and a restored wetland. Chemosphere 88:1083–1089. doi: 10.1016/j.chemosphere.2012.04.048 CrossRefGoogle Scholar
  54. Meteo France (2011) Fiche climatologique: statistiques 1981-2010 et records. Château SalinsGoogle Scholar
  55. Moore MT, Cooper CM, Smith Jr S, Cullum RF, Knight SS, Locke MA, Bennett ER (2009) Mitigation of two pyrethroid insecticides in a Mississippi Delta constructed wetland. Environ Pollut 157:250–256. doi: 10.1016/j.envpol.2008.07.025
  56. Moore MT, Schulz R, Cooper CM, Smith JS, Rodgers JJH (2002) Mitigation of chlorpyrifos runoff using constructed wetlands. Chemosphere 46:827–835. doi: 10.1016/s0045-6535(01)00189-8 CrossRefGoogle Scholar
  57. Ng HYF, Clegg SB (1997) Atrazine and metolachlor losses in runoff events from an agricultural watershed: the importance of runoff components. Sci Total Environ 193:215–228. doi: 10.1016/S0048-9697(96)05342-9 CrossRefGoogle Scholar
  58. Ono S, Shiotani H, Ishihara K, Tokieda M, Soeda Y (1984) Degradation of the herbicide alloxydim-sodium in soil. J Pestic Sci 9:471–480. doi: 10.1584/jpestics.9.471 CrossRefGoogle Scholar
  59. Palma G, Sanchez A, Olave Y, Encina F, Palma R, Barra R (2004) Pesticide levels in surface waters in an agricultural-forestry basin in Southern Chile. Chemosphere 57:763–770. doi: 10.1016/j.chemosphere.2004.08.047 CrossRefGoogle Scholar
  60. Passeport E, Tournebize J, Chaumont C, Guenne A, Coquet Y (2013) Pesticide contamination interception strategy and removal efficiency in forest buffer and artificial wetland in a tile-drained agricultural watershed. Chemosphere 91:1289–1296. doi: 10.1016/j.chemosphere.2013.02.053 CrossRefGoogle Scholar
  61. Quilbé R, Rousseau AN, Duchemin M, Poulin A, Gangbazo G, Villeneuve J-P (2006) Selecting a calculation method to estimate sediment and nutrient loads in streams: application to the Beaurivage River (Québec, Canada). J Hydrol 326:295–310. doi: 10.1016/j.jhydrol.2005.11.008 CrossRefGoogle Scholar
  62. R Development Core Team (2005) R: a language and environment for statistical computing. R Development Core Team, ViennaGoogle Scholar
  63. Rabiet M, Margoum C, Gouy V, Carluer N, Coquery M (2010) Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment—effect of sampling frequency. Environ Pollut 158:737–748. doi: 10.1016/j.envpol.2009.10.014 CrossRefGoogle Scholar
  64. Regional Action Group Against Pesticide water Pollution in Lorraine (2006) Les produits phytosanitaires utilisés par l’agriculture lorraine. Résultats de l’enquête réalisée auprès des distributeurs lorrains sur la campagne 2004/2005. Available at: Accessed 28 August 2014
  65. Schulz R, Peall SKC, Hugo C, Krause V (2001) Concentration, load and toxicity of spray drift borne azinphos-methyl at the inlet and outlet of a constructed wetland. Ecol Eng 18:239–245CrossRefGoogle Scholar
  66. Sevilla-Morán B, Alonso-Prados JL, García-Baudín JM, Sandín-España P (2010) Indirect photodegradation of clethodim in aqueous media by product identification by quadrupole time-of-flight mass spectrometry. J Agric Food Chem 58(5):3068–3076CrossRefGoogle Scholar
  67. Spalding RF, Snow DD (1989) Stream levels of agrichemicals during a spring discharge event. Chemosphere 19:1129–1140. doi: 10.1016/0045-6535(89)90061-1 CrossRefGoogle Scholar
  68. Stehle S, Elsaesser D, Gregoire C, Imfeld G, Niehaus E, Passeport E, Payraudeau S, Schafer RB, Tournebize J, Schulz R (2011) Pesticide risk mitigation by vegetated treatment systems: a meta-analysis. J Environ Qual 40:1068–1080. doi: 10.2134/jeq2010.0510 CrossRefGoogle Scholar
  69. Sura S, Waiser MJ, Tumber V, Raina-Fulton R, Cessna AJ (2015) Effects of a herbicide mixture on primary and bacterial productivity in four prairie wetlands with varying salinities: an enclosure approach. Sci Total Environ 512-513:526–539. doi: 10.1016/j.scitotenv.2015.01.064 CrossRefGoogle Scholar
  70. Tediosi A, Whelan MJ, Rushton KR, Thompson TRE, Gandolfi C, Pullan SP (2012) Measurement and conceptual modelling of herbicide transport to field drains in a heavy clay soil with implications for catchment-scale water quality management. Sci Total Environ 438:103–112. doi: 10.1016/j.scitotenv.2012.08.042 CrossRefGoogle Scholar
  71. Tournebize J, Passeport E, Chaumont C, Fesneau C, Guenne A, Vincent B (2013) Pesticide de-contamination of surface waters as a wetland ecosystem service in agricultural landscapes. Ecological Engineering, Bringing Together Science and Policy to Protect and Enhance Wetland Ecosystem Services in Agricultur 56, 51–59. doi: 10.1016/j.ecoleng.2012.06.001
  72. Ulrich MM, Mueller SR, Singer HP, Imboden DM, Schwarzenbach RP (1994) Input and dynamic behavior of the organic pollutants tetrachloroethene, atrazine, and NTA in a lake: a study combining mathematical modeling and field measurements. Environ Sci Technol 28:1674–1685. doi: 10.1021/es00058a020 CrossRefGoogle Scholar
  73. European Union (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Union, Brussels, BelgiumGoogle Scholar
  74. European Union (2008) Water Framework Directive (WFD) 2008/105/CE of 16 December 2008 on environmental quality standards in the field of water policy. Official Journal of the European Union, Brussels, BelgiumGoogle Scholar
  75. European Union (2013) Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official Journal of the European Union, Brussels, BelgiumGoogle Scholar
  76. United Nations Environment Programme (1998) Available at: Accessed 26 July 2014
  77. University of Hertfordshire (2014) Pesticide Properties Database (PPDB). Available at: Accessed 10 June 2014
  78. Vymazal J, Březinová T (2015) The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review. Environ Int 75:11–20. doi: 10.1016/j.envint.2014.10.026 CrossRefGoogle Scholar
  79. Walling DE, Webb BW (1985) Estimating the discharge of contaminants to coastal waters by rivers: some cautionary comments. Mar Pollut Bull 16:488–492. doi: 10.1016/0025-326X(85)90382-0 CrossRefGoogle Scholar
  80. Wezel A, Arthaud F, Dufloux C, Renoud F, Vallod D, Robin J, Sarrazin B (2013) Varied impact of land use on water and sediment parameters in fishponds of the Dombes agro-ecosystem, France. Hydrol Sci J 58(4):854–871. doi: 10.1080/02626667.2013.780656 CrossRefGoogle Scholar
  81. Xiao Y, Mignolet C, Mari JF, Benoît M (2014) Modeling the spatial distribution of crop sequences at a large regional scale using land-cover survey data: a case from France. Comput Electron Agric 102:51–63. doi: 10.1016/j.compag.2014.01.010 CrossRefGoogle Scholar
  82. Ying GG, Williams B (2000) Dissipation of herbicides in soil and grapes in a South Australian vineyard. Agric Ecosyst Environ 78:283–289. doi: 10.1016/S0167-8809(99)00127-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Juliette Gaillard
    • 1
    • 2
  • Marielle Thomas
    • 1
    • 2
  • Angélique Lazartigues
    • 3
  • Bénilde Bonnefille
    • 1
    • 2
  • Christelle Pallez
    • 4
  • Xavier Dauchy
    • 4
  • Cyril Feidt
    • 1
    • 2
  • Damien Banas
    • 1
    • 2
  1. 1.UR Animal et Fonctionnalités des Produits AnimauxUniversité de LorraineVandoeuvre-lès-Nancy CedexFrance
  2. 2.INRA, UR Animal et Fonctionnalités des Produits AnimauxVandoeuvre-lès-NancyFrance
  3. 3.Département des Sciences FondamentalesUniversité du Québec à ChicoutimiQuébecCanada
  4. 4.Nancy Laboratory for Hydrology, Water Chemistry DepartmentANSESNancyFrance

Personalised recommendations